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Abstract
Under natural viewing conditions, human observers

selectively allocate their attention to subsets of the vi-
sual input. Since overt allocation of attention appears
as eye-movements, the mechanism of selective atten-
tion can be uncovered through computational stud-
ies of eye-movement prediction. Since top-down at-
tentional control in a task is expected to modulate
eye-movements significantly, the models that take a
bottom-up approach based on low-level local proper-
ties are not expected to suffice for prediction. In this
study, we introduce two representative models, apply
them to a facial discrimination task with morphed face
images, and evaluate their performance by compar-
ing them with the human eye-movement data. The
result shows that they cannot predict well the eye-
movements in this task.

1 Introduction

Surrounded by complicated visual information, hu-
man visual processing selectively allocates limited
computing resources such as spatial/feature/object at-
tention. Eye-movements achieve overt allocation of at-
tention by shifting the fovea to the interesting region
of a visual scene. Therefore, eye movements are rep-
resentative of overt attention at the behavioral level,
and the mechanism of selective attention can be uncov-
ered through computational models for eye-movement
prediction.

Eye-movement controllers are roughly divided into
the bottom-up control caused by external factors and
top-down control caused by internal factors. While
the bottom-up control is based on a static mechanism
based on low-level image features such as color, ori-
entation, intensity and so on, the top-down control is
based on a dynamic mechanism that depends on se-
mantics, context or task-related factors treated by the
high-level cognitive function in the brain.

Recently, a couple of biological models for predict-

ing eye-movements were proposed. One of these mod-
els is the saliency-based model[3]. Alternative models
utilize Shannon’s information theory. These models
are designed to explain eye-movements from the view-
point of minimizing uncertainty in the visual informa-
tion. Renninger’s model[6] is representative of these.
In this study, we focus on the saliency-based model
and Renninger’s model. All of these models are based
on bottom-up control.

In this paper, we introduce these two models, and
apply them to a discrimination task as well as a free-
viewing task of faces to illustrate the possibility of
eye-movement prediction in these tasks. Finally, we
discuss some characteristics of human eye-movements
specific to facial recognition from the viewpoint of fea-
ture selectivity.

2 Methods

2.1 Behavioral Task

Our tasks consisted of a discrimination task and a
free-viewing task. One of the purposes of our tasks
is verifying that the bottom-up models cannot predict
well human eye-movements in facial recognition. The
other is analyzing how the goal of discrimination mod-
ulates feature selective strategy in the context of facial
recognition through comparing the results of these two
tasks.

Figure 1 shows a set of morphing images for use
in these tasks. To make the set, we generated six-
teen morphing images that had continuous change of
the mixing ratio of two faces, and extracted eight im-
ages that were closer to the half ratio. In the same
way, four sets (32 images) were created for these tasks.
They were based on face images of six men and two
women ranging in age from 22 to 27 years old. The
pairs were made of same-sex face images. For mor-
phing, each face image was converted to a gray-scale
image, and the background was painted black. The

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 464



Fig. 1: A set of facial morphing images.

morphing images were created by a morphing soft-
ware, WinMorph[4], whose algorithm is a field mor-
phing technique[1].

Subjects were seated 73.5 cm from the display
screen and were put on an Eyelink II (SR Research)
eye-tracking device. The screen had a size of 31 cm �
25 cm, a visual angle of 23.8◦ � 19.3◦, a resolution of
1024 pixels � 768 pixels and a frame-rate of 59.84 Hz.
Eye-position data were acquired at 500 Hz and both
eyes were tracked. The stimuli were presented by Mat-
lab’s Psychophysics and Eyelink toolbox extensions[2].

In the discrimination task, each session consisted of
8 blocks of 16 trials. At the beginning of each block,
calibration of the eye-tracker was executed, and at the
beginning of each trial, drift correction was executed.
Figure 2 sketches the procedure of each trial. On each
trial, subjects pressed a button to begin. First, one
of the 32 morphing images (12.5◦ � 12.5◦) was pre-
sented for 1 sec. It was chosen randomly, but all im-
ages appeared at the same times in a session. Then,
two original face images (12.5◦�12.5◦) were displayed
together. Until subjects pressed a button to choose
the face that was more similar to the first morphing
image, the images did not disappear. Finally, feedback
was given.

In the free-viewing task, stimuli were presented un-
der neutral viewing condition without an explicit task
goal. Each session consisted of 8 blocks of 16 trials.
Calibration and drift correction of the eye-tracker were
done in the same way as the discrimination task. On
each trial, subjects pressed a button to begin, then
only the morphing image (12.5◦�12.5◦) was displayed
for 1 sec.

Three male subjects participated in the experiment.
Subjects ranged in age from 23 to 43 years old. All
subjects had normal eyesight.

Fig. 2: Procedure of each trial in the facial discrimi-
nation task.

2.2 Models for Eye Movement Prediction

Eye-tracking data in the experiment were compared
with simulation results of the following models.

2.2.1 Saliency-based Model

This is a model of the visual bottom-up attention
mechanism for early visual processing in primates. An
input image is decomposed into a set of feature maps,
followed by center-surround differences and normaliza-
tion of three features (intensity, color and orientation).
All feature maps are then combined into a unique to-
pographic saliency map. The winner-take-all network
detects the most salient location and directs attention
toward it. An inhibition-of-return mechanism tran-
siently suppresses this location in the saliency map,
such that attention is autonomously directed to the
next most salient image location. This model can plau-
sibly explain eye-movements of the bottom-up control
under the context-free viewing condition.

2.2.2 Renninger’s Model

This is a model for eye-movement prediction in object
discrimination tasks with silhouette images. However,
it is also a bottom-up model because the goal of dis-
crimination was not adopted into the evaluation func-
tion. One of its characteristics is adoption of foveal
and peripheral vision mechanisms. Since discrimina-
tion objects are silhouettes, the information needed
for the task is the edge orientations. Consequently,
the strategy of this model for fixation selection is min-
imization of entropy within edge orientations with re-
spect to variable resolution in the visual field.

The algorithm of this model is described below.
First, edges are decomposed into a collection of
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edgelets, each of which has one of eight possible orien-
tations. Each edgelet j is given a local region whose
size depends on eccentricity Ej(F) from the current
fixation point F (using parameters from the vernier
acuity literature[5]). The probabilistic distribution of
the orientation xj of edgelet j is generated by the
histogram hj(F) regarding orientations of all edgelets
within the region.

P (xj |hj(F), Ej(F)) = hj,xj (F)/Z, (1)

where Z is a normalization constant.
Then, a resolution-dependent entropy (RDE) of

each pixel i is computed.

RDEi =
∑

Hj

j∈all edgelet locations within radius r(Ei(F)) of i

, (2)

where r(Ei(F)) is the radius of the circular region de-
termined by the eccentricity Ei(F) from the fixation
point F, and the entropy Hj of edgelet j is computed
by

Hj = �
8

∑

z=1

P (xj = z) log P (xj = z). (3)

Thus, an RDE map, which represents the uncertainty
of shape knowledge at any point, is generated. The
next fixation is directed towards the maximum point
of the map. The new probabilistic distributions, de-
pending on a new fixation point, are integrated with
the old ones by the Bayesian rule. The posterior prob-
ability can be updated for multiple fixations F1 and
F2 by

P (xj |hj(F1),hj(F2), Ej(F1), Ej(F2))
= hj,xj (F1)hj,xj (F2)/Z ′, (4)

where Z ′ is a normalization constant.
In addition, this model adopts a human property

that saccades to a simple shape or object often landing
near the centroid of that object.

[

fx

fy

]

= w

[

Cx

Cy

]

+ (1 � w)
[

f̂x

f̂y

]

, (5)

where f is the next fixation, f̂ is the model-defined
prediction, C is the centroid, and w is a weight.

3 Results

Three subjects’ accuracy rates ranged from 85.9%
to 89.5%, and their response times ranged from 0.61

Fig. 3: Accuracy rate (left) and response time (right)
with respect to distance between two faces. Error bars
indicate 95% confidence intervals.

Fig. 4: Fixation distribution (upper) and foveated den-
sity (lower).

sec to 0.84 sec. Figure 3 shows the average accuracy
rate and the average response time of the subjects with
respect to distance between two faces. The distance is
defined as the difference between each mixing ratio of
the two source faces of the morphing image, suppos-
ing that the distance between the two source faces is
1. The accuracy rate increased and the response time
decreased with increasing distance.

The upper part of Fig.4 shows the fixation distribu-
tion. Red points indicate the first fixations. Most of
the fixations concentrated around the eyes and noses.
From the middle points of the eyes, 90% of all fixations
are distributed within a visual angle of 2.4◦ and 90%
of the first fixations are distributed within a visual an-
gle of 1.9◦. The lower part of Fig.4 shows the foveated
density generated by the fixation distributions with
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Fig. 5: ROC analysis. Saliency-based model (a,b).
Renninger’s mode (c,d). Discrimination Task (a,c).
Free-viewing Task (b,c)

respect to the visual angle of fovea (2◦).
The predictability of the two models discussed

above was evaluated with ROC analysis. Figure
5 shows ROC curves and the area-under-the-curve
(AUC) of the saliency-based model and Renninger’s
model (without a centroid bias).

4 Discussion

We found that most fixations were concentrated
around the eyes and noses under the condition of face
recognition. This is also supported by the results that
the predictability of Renninger’s model with a centroid
bias (Eq.5) was higher than one without a centroid
bias. Although w ranging from 0.2 to 0.3 made the
AUC highest in Renninger’s experiment[6], the highest
AUC = 0.573 is obtained by w = 0.5 in our discrimina-
tion task and the highest AUC = 0.565 is obtained by
w = 0.6 in our free-viewing task. However, this cannot
lead to the conclusion that Renninger’s model with a
centroid bias is compatible with eye-movements in our
tasks. Since psychological or physiological plausibility
of a centroid bias in our tasks has not been unproved,
this is just a heuristic approach.

In comparison between the discrimination task and
free-viewing task (Fig.4, Fig.5), we could not see a
clear difference. This result defied our expectation
that the variability of eye-movements would become
greater to obtain more features needed by discrimi-
nation. There are two possibilities for the conclusion

that this result leads to. One is that using peripheral
vision is sufficient to obtain facial features. The other
is, in contrast, that the human eye-movement strat-
egy during face viewing involuntarily has the goal of
discrimination. These possibilities cannot be exam-
ined with our experimental paradigm, but need to be
confirmed in further work.

We found that it is difficult for the existing bottom-
up models to predict eye-movements in our tasks.
The eye-movement predictability of the saliency-based
model and Renninger’s model is not so different from
one of random strategy. To explain eye-movements
during face viewing, we must clarify a specific feature
space of the face, and consider the mechanism from
the viewpoint of feature selection.
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