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Abstract

We summarize the work in our laboratories toward
developing adaptive sensor arrays for monitoring bird
vocalizations. We have focused on four species of
antbirds in a tropical rainforest of Mexico. Prelimi-
nary results on individual identification using Support
Vector Machines are presented. Also, we describe our
initial attempts at higher order processing of informa-
tion about the identification and localization of each
source.

1 Introduction

Adaptive sensor arrays provide excellent platforms
for testing hypothesis on different aspects of adap-
tive behavior such as collective and social behavior,
communication and language, emergent structures and
behaviors, among others. This technology holds the
potential to produce a major paradigm shift in the
way we interact with the physical environment. Fur-
thermore, understanding the capabilities and limita-
tions of sensor arrays will be important for guiding the
construction of artifacts that possess problem-solving
abilities.

In this study we are concerned with developing
acoustic sensor arrays so that they will be useful for
observing and analyzing bird diversity and behavior.
We would like each sensor to see and “understand”
part of the situation – depending on its own location
– then to fuse their experiences with other such sen-
sors to form a single, coherent understanding by the
ensemble [1]. The ideal is that the array will act some-
thing like a living membrane, sensitive to what is going
on within it, around it and passing through it.

Toward that goal we have developed and tested sen-
sor arrays that can identify their own location and
sense bird vocalizations in real-world settings. We

have developed filters to identify species (in some in-
stances individual birds) and software tools to localize
those individuals in natural environments. More re-
cently, we are beginning to explore how we can iden-
tify the meaning of these vocalizations in the social
context of the vocalizing animals. Separate aspects
of this work has been described elsewhere, indicated
below. In this paper we will briefly touch on those
topics, but focus on the issue of individual recognition
by Support Vector Machines [2].

2 Methods and tools

2.1 Biological context

The principal field site for our work has been
the rainforest environment at the Estación Chajul,
Reserva de la Biósfera Montes Azules, in Chiapas
México (approximately 16◦6′44′′ N and 90◦56′27′′

W). The species of birds in our analysis have been
the Barred Antshrike (BAS) (Thamnophilus dolia-

tus), Dusky Antbird (DAB) (Cercomacra tyrannina),
Great Antshrike (GAS) (Taraba major), and the Mex-
ican Antthrush (MAT) (Formicarius analis). A sono-
gram of two MATs is in Figure 1, below, and those
for the other species are illustrated in [3]. Exam-
ples of the songs from these species are posted on
http://taylor0.biology.ucla.edu/al/bioacoustics/.

2.2 Sensor arrays

We have developed and tested an acoustic plat-
form with small microphone sub-arrays that can be
deployed 10-30m apart. They are automatically cal-
ibrated, to determine their location and orientation,
then activated to perform streaming event recognition,
and acquire data when triggered by animal vocaliza-
tions. Details on the development and implementation
of the Acoustic ENSBox platform are described in [4].
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2.3 Event recognition

Event recognition a critical first step to process-
ing that follows, triggering source recognition and lo-
calization. We find that streaming adaptive statitical
classifiers are a good approach in most cases.

We have implemented a marmot alarm call detec-
tor which runs in real time on the Acoustic ENSBox
platform. Since the nodes are connected to each other
via wireless ethernet, we make one additional improve-
ment. If one node detects an event, that node tells all
the others to trigger. In this way, the thresholds can
be set quite high since only the node nearest to the
event needs to detect it. Specific performance results
are reported in [5].

2.4 Acoustic bird species recognition

We have developed filters to identify species, and
individual birds in natural environments. We have
taken several approaches. We have obtained promising
results by extracting a sonogram of the vocalization,
then look at particular features of those sonograms
that might be particular to the species.

We have found it most helpful is to adapt meth-
ods from human voice recognition to create a Markov
Transition Matrix appropriate to the vocalizations of
each individual or species. We are also looking at other
methods that appear promising, especially data min-
ing and Self-Organizing Maps.

Trifa [3] describes in detail our experience with us-
ing HMMs to discriminate among different species of
antbirds. In general, discrimination is at least 90%
successful. We are currently directing efforts at iden-
tifying individuals, with quite positive preliminary re-
sults.

Similarly, we have explored with the use of data
mining for the classification of bird species. The main
goal has been to understand the importance of partic-
ular features of the acoustic signal that are distinctive
for the accurate discrimination of bird species. A sec-
ondary goal has been to reduce the dimensionality of
the acoustic signal in order to minimize the compu-
tational resources required for its manipulation and
analysis [6].

Escobar [7] employed Self-Organizing Maps (SOMs)
for the acoustic classification of bird species. The over-
all goal has been to examine the scope in which un-
supervised learning is capable of conferring meaning-
ful categorization abilities and increasing autonomy to
sensor arrays.

Figure 1: Spectrograms for two MATs from one terri-
tory

2.4.1 Acoustic bird individual recognition

It is sometimes possible to distinguish individual
singers. For example, Figure 1 shows sonograms for
the songs of we inferred to be two MATs singing on
the same territory. Songs were recorded from each of
10 birds during December 2006, by Martin Cody. The
identitication of each singer was inferred from timing
and location. Samples of 20 - 50 songs from each of
the 6 territories they occupied were included. The
sonogram of each song was measured for 20 traits, in-
cluding length and maximum or minimum frequency
at various parts of the song, so that each song was
represented by a vector. The standardized variance-
covariance matrix for all songs was calculated and
principal components extracted. Each song is plot-
ted in the first two principal axes of Figure 2. The
convex hull of songs for what we identified as each
individual shows the clustering. It is apparent that
some individuals are clearly distinguished while oth-
ers are much less so, at least when plotted in these
two dimensions. We are currently exploring ways to
automate this procedure and increase the power of dis-
crimination, with the goal of identification being done
in real time on each node in the array.

Particularly, we have recently explored with the use
of Support Vector Machines (SVMs) for the classifica-
tion of individual MATs. Using feature selection we
reduced the dimensionality of the original vector to 7
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Figure 2: Convex hulls of principal component scores
from 10 putatively individual MATs

individual samples training testing
PMPa 28 21 7
PMPb 22 16 6
LGEa 12 9 3
PBEa 25 19 6
AVEa 38 30 8
LCNb 17 13 4
SNWa 20 15 5

Table 1: Individual MATs data set

features. Additional data selection yielded the data
set used in our experiments with SVMs (Table 1).

We conducted simple scaling to the data (z-scores).
A radial basis function (RBF) kernel was used for the
experiments. N -fold cross-validation was conducted to
find appropriate kernel parameters. Training was per-
formed using the obtained kernel parameters on the
training set. Testing was conducted using data sam-
ples not included in the training set. This procedure
is fully described in [8].

The classification results obtained in our prelimi-
nary experiments are presented in Table 2.

2.5 Localizing sound sources

When an array of sound sensors are employed, local-
izing the source of a sound should be possible in any of

procedure accuracy classified misclassified
training 94.30 116 7
testing 84.62 33 6

Table 2: Classification results

several ways – including comparison of sound energy,
comparison of time of arrival of the sounds, and anal-
ysis of phase relations of the sound waves. In the rain-
forest, comparing sound energy is difficult because of
reflection and interference from the vegetation. Com-
paring time of arrival is made difficult when sensors are
widely spaced because of drifting time synchronization
among widely spaced processors that need to process
the sounds. Consequently, we have focused our efforts
on comparing phase relations among the several mi-
crophones on the sub-arrays described in section 2.2
above. Within the sub-array there are expected to
be differences in the phases that arrive at the several
sensors, but time synchronization is achieved by us-
ing the same or closely coupled processors. While not
permitting localization as such, this method does per-
mit estimation of direction of arrival (DOA) to any
one sub-array. Triangulation of estimated DOA from
several sub-arrays can then be used to identify the lo-
cation, itself, of the source.Our colleague Kung Yao
and his students have developed algorithms for esti-
mating DOA in these circumstances. Their method,
termed “Approximate Maximum Likelihood” (AML),
is described in [9] and [5].

2.6 Emergent understanding

Our long term goal is to provide sensor arrays with
the adaptation capabilities required to identify the
meaning of bird vocalizations in the social context of
the vocalizing animals. This requires event recogni-
tion, symbol grounding and adaptive communication
in order for the array to arrive at a collective under-
standing [10]. Previous studies have established plau-
sible scenarios for the emergence of these capabilities
in sensor arrays [11].

Symbol grounding, identifying and binding seman-
tically meaningful events to symbols, then communi-
cating that information among parts of the arrays is of
great importance. We are currently examining meth-
ods based on information theory [12].

Once events have been recognized then we can use
self-organizing maps to categorize the songs . A prob-
lem has been that new events might be attached to one
symbol in one part of the array, but to another symbol

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 87



in other parts of the array. We have determined, to
some extent, the conditions under which the different
“meanings” will converge or remain separate [13].

Finally, we are developing the linguistic structure
that is necessary to describe these songs and events
in an expressive, learnable manner, based on the ideas
developed by Stabler [14].

3 Conclusions

Overall, adaptive sensor arrays seem promising
platforms for habitat monitoring applications. In the
near future, our efforts will be directed towards en-
abling sensor arrays with increasing adaptability and
cognitive abilities. To accomplish this we will build
largely on the results reported here.
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