

Abstract

Due to increasing complexity of tasks delegated to
unmanned vehicles, their collective use is becoming of
paramount importance for performing any reasonable jobs.
An approach is offered where group behaviors are
accomplished automatically rather than set up manually, as
usual. Missions in the Distributed Scenario Language (DSL)
can be executed jointly by communicating interpreters in
robotic units. Scenarios like reconnaissance, camp security,
convoy, mule, and EOD in DSL, oriented on different
numbers of cooperating vehicles, are demonstrated. The
approach may allow us to effectively manage any robotic
teams, both homogeneous and heterogeneous, regardless of
the number of vehicles in them.

Keywords: unmanned systems, scenario language,

robotic teams, swarms, distributed interpretation,
reconnaissance, camp security, convoys, EOD, high-level
management.

1 Introduction

With the world dynamics increasing due to global
warming, numerous natural and manmade disasters, military
conflicts, and international terrorism, using unmanned
(ground, sea, underwater, and air) systems can alleviate
many problems and save lives in hazardous environments.
Because of the complexity of tasks delegated to unmanned
solutions and still insufficient capabilities of existing robotic
vehicles, their simultaneous, collective use may be of
paramount importance to perform any reasonable jobs.
Operating together, the unmanned groups, often called
swarms, can fulfill the required objectives despite possible
runtime damages to individual units.

We are offering a novel approach to organization of
unmanned swarms, oriented from the very beginning on
parallel solutions in physical spaces, with swarm behaviors
resulting naturally and accomplished automatically, rather
than programmed manually. A mission scenario, written in a

special high-level language and reflecting semantics of
what to be done in a distributed space rather than details
of implementation, is executed in a cooperative manner
by dynamically networked unmanned units.

The current paper is inspired by the European Land
Robotic Trial ELROB 2008 [1], in which the authors
participated. It was conducted to provide trials as close
as possible to operational scenarios for UGVs/UAVs
with focus on short-term realizable robot systems. The
day and night trials were organized within the following
five main scenarios: non-urban reconnaissance, camp
security, transport convoy, transport mule, and explosive
ordnance disposal. Only a limited number of robotic
units was engaged in every scenario, just one or two,
whereas every scenario could potentially be executed
with much higher efficiency if using robotic teams with
many units, which cooperate with each other.

The paper reflects an initial state of the international
project under sponsorship of Alexander von Humboldt
Foundation (AvH) in Germany. Its aim is formalization
of known mission scenarios in such a way that they
could be performed by any available numbers of robotic
vehicles, with the management burden shifted to self-
organized robotic teams--thus relieving human operators
from tedious routines and allowing them concentrate on
mission goals and overall efficiency.

The main features of the Distributed Scenario
Language and its parallel interpretation in distributed
environments are briefed, with more details on the
underlying paradigm and its applications easily
obtainable from the previous publications [2-4]. The
formalization and expression in DSL of the main
ELROB 2008 scenarios is provided on a semantic level,
with the scenarios to be potentially executed by any
number of mobile robots, and overall management of
robotic swarms fully shifted to the self-organized
network of DSL interpreters.

The scenario examples in DSL (unfortunately, without
detailed comments, due to page limits) show
compactness of the DSL code, which can be written on
the fly, thus timely responding on dynamics of the

Developing High-Level Management Facilities for
Distributed Unmanned Systems

Peter Sapaty

Institute of Mathematical Machines and Systems, National Academy of Sciences
Glushkova Ave 42, 03187 Kiev, Ukraine, sapaty@immsp.kiev.ua

Klaus-Dieter Kuhnert

Institute of Real-Time Learning Systems, University of Siegen
Hölderlinstr. 3, D-57068 Siegen, Germany, kuhnert@fb12.uni-siegen.de

Masanori Sugisaka

Department of Mechanical and Electrical Engineering, Nippon Bunri University
1727 Oaza Itiki, Oita, 870-0397, Japan, ms@alife-robotics.co.jp

Robert Finkelstein

Robotic Technology Inc.11424 Palatine Drive, Potomac MD, USA
RobertFinkelstein@compuserve.com

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 686

environment and changing system goals. More on the
underlying spatial algorithms and related DSL code
interpretation will be in subsequent publications, including
the forthcoming project report for AvH.

2 Distributed Scenario Language (DSL)

Our approach is based on the Distributed Scenario
Language (DSL), describing what to do in distributed spaces
rather than how to do, and by which resources, leaving the
latter to an effective automatic interpretation in networked
environments. The DSL main features include:

• Association of different actions (which may be
performed in parallel) with positions in physical, virtual,
or combined spaces

• Working with both information and physical matter
• Runtime creation of distributed knowledge networks
• Distributed decision making
• Automatic command and control

DSL has a recursive syntax that can be expressed on the

top level as follows (square brackets are for an optional
construct, braces mean construct repetition with a delimiter
at the right, and vertical bar separates alternatives).

wave constant | variable | [rule] ({wave , })
constant information | matter
variable nodal | frontal | environmental
rule evolution | fusion | verification | essence
evolution expansion | branching | advancing |

 repetition | granting
fusion echoing | processing | constructing |

 assignment
verification comparison | membership | linkage
essence type | usage

A rule is a general construct which can be:
• Elementary arithmetic, string or logic operation
• Hop in a physical, virtual, or combined space
• Hierarchical fusion and return of (remote) data
• Parallel and distributed control
• Special context for navigation in space
• Sense of a value for its proper interpretation
Different types of variables, especially when used

together, allow us to create efficient spatial algorithms
which work in between components of distributed systems
rather than in them. The nodal variables can store and
access local results in the system points visited, while other
ones can transfer data in space together with the evolving
control (frontal variables) or access and impact the internal
and external world (environmental variables).

Due to peculiar syntax and semantics, the language
parallel interpretation in distributed systems is transparent
and straightforward, and does not need any central resources.
DSL can dramatically simplify application programming in
distributed environments, which is often much more concise
and simple than in traditional programming languages.

3 Distributed DSL Interpreter

The DSL interpreter may be embedded in internet hosts,
robots, mobile phones, or smart sensors (the interpreter can

also be a human being herself, understanding and
executing high-level orders in DSL and communicating
with other humans or robots via the language syntax).
The interpreter copies may be concealed, if needed (say,
to work in a hostile environment); they can also migrate
freely, collectively executing (mobile too) mission
scenarios, resulting altogether in a flexible and
ubiquitous system organization.

The interpreter [3] consists of a number of specialized
modules working in parallel and handling & sharing
specific data structures, which are supporting both
persistent virtual worlds and temporary hierarchical
control mechanisms. The heart of the distributed
interpreter is its spatial track system enabling
hierarchical command and control and remote data and
code access, with high integrity (or “consciousness”) of
emerging parallel and distributed solutions, achievable
without any central facilities.

In application to robotic communities, the approach
allows us to convert any group of mobile robots into a
goal-directed cooperative system by integrating copies of
the DSL interpreter, as a universal control module U on
Fig. 1, with traditional robotic functionalities, like the
ones described in [5]. (The figure uses pictures of mobile
robots participated in the ELROB 2008 trial.)

U

U

U U

U
U

U

U
U

U

Figure 1. Heterogeneous robotic teaming using
embedded DSL interpreters.

Any mission scenario in DSL can start from any robot,

covering and tasking the whole system (or its parts
needed) at runtime and in parallel. Subordination
between the units and dynamic command and control are
established automatically--as a derivative of the mission
scenario and current state of environment.

Due to fully interpretive nature of the technology, the
scenarios can self-recover from any point, timely
reacting on failures of robots. The whole group may
remain fully functional and global-goal-oriented even in
case of indiscriminate damages to individual units.

4 Non-urban / Reconnaissance

For this scenario, it is supposed that a group of
unknown vehicles is located in some distance in a non-
urban area (defined, say, with the position of a center and
area’s radius), with security situation unclear there, so

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 687

the reconnaissance should be done by robotic vehicles for
not risking own personnel. The objective is to go to this
target area and search for vehicles with specific
characteristics. If found, they should be examined in detail,
with their parameters collected and reported to the control
station.

The general picture is shown in Fig. 2, where the
reconnaissance facilities should first go to the target area (i.e.
its center), observe the area by cameras/sensors to roughly
locate most probable targets (by their size, for example).
The next will be to move directly to these selected targets
and sense & collect their detailed parameters, with sending
the results to the control point where they are stored and
analyzed.

Start

Target
area

Target
vehicles

Radius

Center
Find

Result 3

Move

Result 2

Result 1
Move

Figure 2. The reconnaissance scenario.

Parallel solution. This solution in DSL may allow us to

use as many reconnaissance vehicles as possible (a single
one including), potentially involving individual vehicles for
each target identified, for their detailed examination.

 USER = (
 move (start); WHERE = center;
 Targets = recognize (radius, features);
 split (Targets); WHERE = VALUE;
 collect (size, type, speed))

Explicitly sequential solution. The following DSL

program just details navigation and organization procedures
to execute the reconnaissance scenario in a strictly
sequential way, which may be useful for optimization of the
use of a single vehicle only.

move (start); WHERE = center;
Targets = recognize (radius, features);
loop (
 (Next = withdraw (Targets, 1)) != nil;
 WHERE = Next;
 Result &= collect (size, type, speed));
USER = Result

Avoiding obstacles. The movement to the target area and

inside it may be complicated due to presence of obstacles, as
shown in Fig. 3. The following DSL program, for the move
from Start to Center, uses an external procedure
approach_or_stop to detect obstacles and stop to avoid
collision, and the procedure suitable to find next
suitable waypoint on the way to the destination, from which
the move should continue.

Start

Target
area

Target
vehicles

Radius

Center
Find

Move

Obstacle

Next

Next

Stop

Figure 3. Avoiding obstacles.

move (start);
loop (approach_or_stop (center);
 WHERE ! = center;
 Next = suitable (depth, center);
 WHERE = Next)

5 Camp Security

For the camp security scenarios, a defined urban area
has to be monitored (think military camp) and this should
be executed by robotic vehicles too, to minimize risk to
human personnel. The objective is to detect and report
irregularities in the area, like intruders, while acquiring
their positions and imagery, and transmitting to control
station.

The general picture is shown in Fig. 4, where the camp
units (numbered 1 to 6) are simultaneously patrolled by a
number of robotic vehicles moving along the paths
between and around the buildings.

1 32

54 6

Y

X

r

r rr

r r

r

r rr

r

r

rr

r

r

Robot 2

R
ob

ot
 1

Robot 3

r

0_2 3_21_2

0_0

3_12_11_1

2_01_0

Figure 4. Camp security scenario.

Distributed campus map. The proper routing of
vehicles and resolution of possible conflicts between
them (like collision avoidance) can be assisted by the
creation of a distributed map of the campus area (just
reflecting Fig. 4) by the following DSL program (with
node names reflecting X-Y coordinates of the crossings,
and all links named r):

create (#3_1; F1=A; r#2_1; F2=A;
 r#1_1; F3=A; r#0_1;

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 688

 (r#0_2; r#1_2; r#F3, (r#2_2; r#F2,
 (r#3_2; r#F1))),
 (r#0_0; r#1_0; r#F3, (r#2_0; r#F2,
 (r#3_0; r#F1))))

Random movement. The next program organizes duty

performance by three parallel processes (which may be
executed by three robots) using the created distributed map,
with random choice of the next-hop crossing and activation
of the external service procedure move_check_report
to analyze the local security situation while on the move.

hop (0_1, 2_2, 3_0);
WHERE = CONTENT;
repeat (
 or (
 (hop (link (random));
 grasp (Mark == nil; Mark = 1);
 (hop (BACK); Mark) = nil;
 move_check_report (CONTENT)),
 stay))

Movement via predetermined routes. If to use

predetermined routes only, like shown in Fig. 5 (one route
using links named r1 and another one r2), the collisions
between robots can be avoided in full.

1 32

54 6

r1

R
ob

ot
 1

Robot 2

0_2 3_21_2

0_0

3_12_11_1

2_01_0

2_2

r1

r1

r1

r1

r1

r2

r2

r2

r2r2

r2

r rr

r

r

Figure 5. Using predetermined routes

Additional links r1 and r2 in the campus map can be
installed by the following DSL program:

Linkup (
 (#0_2; r1#1_2; r1#1_1; r1#1_0; r1#0_0;
 r1#0_1; r1#0_2),
 (#3_2; r1#2_2; r1#2_1; r1#2_0; r1#3_0;
 r1#3_1; r1#3_2))

And two independent spatial processes navigating the

campus via the new links (which may engage two robots)
can be organized by the following parallel DSL code:

(hop (0_1); Flink = +r1),
(hop (3_0); Flink = +r2);
WHERE = CONTENT;
repeat (
 hop (link (Flink));
 move_check_report (CONTENT))

Any imaginable combinations of different types of

simultaneous movement through the camp (like those by
predetermined routes and/or by free, random, wandering)

with collision avoidance can also be easily organized in
DSL.

6 Transport Convoy

Imagine there is a delivery for a camp located in some
distance. The objective is to move at least two vehicles to
the target location, where only the first one can be
manned and the second should follow the route of the
first one, on a certain distance from it. We will consider a
fully robotic solution for such a convoy, with two and
also any number of vehicles, where only the first vehicle
knows (and follows) waypoints toward the target
location, while others dynamically chaining with, and
following the previous ones on the move.

Two-unit convoy. It is represented by the
communicating Leader and Follower, where the
first one defines its movement by a sequence of
waypoints, and the second one, regularly requesting the
Leader, moves to the positions previously occupied by it,
while keeping a certain threshold distance. This is shown
in Fig. 6, and by the DSL program that follows

Waypoints

Range

Leader
Follower

Start Leader,
Follower

Figure 6. Two-unit convoy.

move (start);
(create (Leader);
 Waypoints = (w1, w2, w3, …);
 loop (
 (Next = withdraw (Waypoints,1))!= nil;
 WHERE = Next)),
(create (Follower);
 sling (
 Lcoord = (hop (range, any); WHERE);
 distance (WHERE, Lcoord) > threshold;
 WHERE = Lcoord))

Multiple-unit convoy. A scenario for the convoy with

any number of chained processes (to be materialized by
robotic units) is described by the following DSL program
and depicted in Fig. 7. For this case, only the first
process is a pure leader and the last process is a pure
follower, while all other processes combine both
functionalities, i.e. being followers for the previous
processes and leaders for the subsequent ones.

move (start);
cycle (N < number; create (N += 1));
(NAME == 1; Waypoints = (w1, w2, w3, …);
 loop (
 (Next = withdraw(Waypoints, 1))!= nil;
 WHERE = Next)),
(NAME != 1;
 sling (
 Lcoord = (hop (range, NAME-1); WHERE);

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 689

 distance (WHERE, Lcoord) > threshold;
 WHERE = Lcoord))

Waypoints
Range

Leader

Leader
Follower

Leader
Follower

Leader
Follower

Follower

Start

1

5
3

4 2

Nodes:
1, 2, 3, 4, 5

Figure 7. Multiple-unit convoy.

7 Transport Mule

Fir this scenario, there are two camps with a certain
distance in between, and a cargo with a given weight should
be transferred between the camps. We will consider here
different possibilities to deliver payload between the camps,
using unmanned vehicles as “mules”.

In a single piece. This may be the case if cargo’s weight
allows it to be put on a single vehicle, as shown ion Fig. 8.

Cargo
Campus2Campus1

Figure 8. Single piece cargo delivery.

The related DSL program will be as follows:

move (Campus1);
frontal (Cargo) =“substance”;
move (Campus2); Store = Cargo

Shuttling between camps. For this option, the process

shuttles as often as possible between the two camps after
partitioning the cargo into portions for the weight allowed,
unless all the cargo is delivered, as shown in Fig. 9 and by
the following program.

Limit
Campus2Campus1

Figure 9. Shuttling delivery.

move (Campus1); frontal (Load);
Cargo = “substance”; Limit = 50;
loop (
 or (
 (weight (Cargo) > Limit;
 Load = withdraw (Cargo, Limit)),
 (weight (Cargo) > 0; Load = Cargo));
 hop (Campus2); Store += Load;
 hop (Campus1))

Multiple, parallel delivery. For this case, different

processes (vehicles) are considered to be independent from
each other, each moving to the destination as quickly as
possible on its own (see Fig. 10 and the following program).

Limit

Limit
Limit

Limit
…

Campus2Campus1

Figure 10. Parallel cargo delivery.

move (Campus1); frontal (Load);
Cargo = “substance”; Limit = 50;
cycle (
 or (
 (weight (Cargo) > Limit;
 Load = withdraw (Cargo, Limit)),
 (weight (Cargo) > 0; Load = Cargo)));
move (Campus2); Store += Load

Multiple, convoy delivery. For this scenario, the

vehicles, each with a limited partition of cargo, are
dynamically chaining in a column for a cohesive
movement towards the destination (see Fig. 11 and the
subsequent DSL program).

Limit Limit Limit …Limit Campus2Campus1

Figure 11. Delivery in a convoy.

move (Campus1); frontal (Load);
Cargo = “substance”; Limit = 50;
cycle (
 Or (
 (weight (Cargo) > Limit;
 Load = withdraw (Cargo, Limit)),
 (weight (Cargo) > 0; Load = Cargo));
 create (N += 1));
(NAME == 1; move (Campus2)),
(NAME != 1;
 loop (WHERE != Campus2;
 WHERE = (hop (NAME-1); WHERE));
Store += Load

8 Explosive Ordnance Disposal

Explosive Ordnance Disposal (EOD) means the
detection, identification, onsite evaluation, rendering
safe, recovery, and final disposal of Unexploded
Ordnance (UXO) including detonation and burning. It is
often said that the EOD operation is a 3 Ds one, which is
Dangerous, Dirty and Demanding (or Difficult) job.
Using robotic vehicles, especially multiple ones, is
therefore becoming the most promising EOD option.

Various kinds of EOD scenarios for navigation and
examination of the target territory may be offered. We
will just hint here on the simplest two options, easily
expressible in DSL.

Sequential territory search. This represents a single-
thread process (oriented on a single vehicle), where the
whole territory is incrementally scanned unless all being
searched, as described by the following program and
depicted in Fig. 12.

X1 =…, X2 =…; Y = Y1; Y2 =…; DY =…;
loop (WHERE = (X1, Y); (Y += DY) < Y2;
 WHERE = (X2, Y); (Y += DY) < Y2)

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 690

X1 X2

Y1

Y2

DY

Figure 12. Sequential navigation.

Parallel territory search. This can be represented by a
number of independent processes, each starting from a
different location, and navigating altogether the whole
region in parallel, as depicted by Fig. 13 and explained by
the DSL program that follows.

X1 X2

Y1

Y2

DY

Figure 13. Parallel navigation.

X1 = …; X2 = …; Y1 = …; Y2 = …; DY = …;
frontal (Y) = Y1; DDY = 0;
cycle ((Y += DDY) < Y2; DDY += DY);
WHERE = (X1, Y); WHERE = (X2, Y)

9 Conclusions

Programming multi-robot scenarios in distributed and
dynamic environments using DSL may not be more
complex than, say, programming routine data processing
tasks in traditional languages like Fortran, C, or Java, where
the latter can run on parallel computers using any available
number of processors. In our case, any multi-robot system
may also be treated as a universal parallel computer (more
correctly: parallel machine, as it operates not only with
information but with physical matter or objects too).

The mission scenario in DSL may set up top level
semantics of what, and generally how, should be done in a
distributed space, and which key decisions should be taken
in different spatial locations, to fulfill the objectives,
regardless of the number of available robotic units, which
may vary overtime (as some robots can be destroyed while
others entering the operational field at runtime). This may
essentially (and in many cases completely) relieve the
human manager from traditional tedious routines of
handling distributed multi-component systems, shifting the
organizational burden to parallel scenario interpretation in
the self-organized network of DSL interpreters.

This also gives us new opportunities for self-recovery
in hostile environments as, first, the DSL scenarios may
be free from mentioning any hardware robotic
components (like computational problems in Fortran not
mentioning computer registers or functional units and
data transfers between them), and failures or recovery of
particular robots may not be the business of the
application program but rather of the internal system
organization. And, second, due to fully interpretative
nature of DSL, self-spreading scenarios in it may
themselves recover from any point (robot), or even be
self-relaunching from the beginning in most unfavorable
situations. Using DSL, the human operator may
effectively control distributed robotic swarms regardless
of the number of units in them, just like controlling a
single robot remotely, due to high self-organizational
level of the swarms within the technology offered.

The current work is in progress, and in parallel with
re-implementation of the technology on new, robotic,
platforms (its existing public domain is mostly used for
intelligent network management), we are considering
various scenarios of engagement of heterogeneous
unmanned systems for solving complex tasks. One of
these is investigation and development of exemplary
behaviors integrating energy (e.g. biofuel) seeking
foraging robots [6] with other types of vehicles having
specific payloads (the latter supposedly consuming the
energy produced by the former). The foraging robots are
dedicated to operate autonomously and for a long time in
remote unpopulated areas, and heterogeneous swarms
with them may represent a promising approach for
advanced applications.

We also hope that the current project may help the
next, ELROB 10, event to use more cooperating robots
and even their swarms within the scenarios discussed,
and, possibly, quite new ones.

Acknowledgment. This work has been funded by the
Alexander von Humboldt Foundation in Germany.

References

[1] Military European Land-Robot Trial, M-ELROB

2008: 30 June – 03 July 2008, Hammelburg,
Germany, http://www.m-elrob.eu/.

[2] P. Sapaty, M. Sugisaka, R. Finkelstein, J.
Delgado-Frias, N. Mirenkov, “Advanced IT
Support of Crisis Relief Missions”, Journal of
Emergency Management, Vol.4, No.4, ISSN
1543-5865, July/August 2006.

[3] P. S. Sapaty, Ruling Distributed Dynamic Worlds,
John Wiley & Sons, New York, May 2005, ISBN
0-471-65575-9.

[4] P. Sapaty, Distributed Technology for Global
Dominance, Proceedings of SPIE – Volume 6981,
Defense Transformation and Net-Centric Systems
2008.

[5] K.-D. Kuhnert, M. Krödel: Autonomous Vehicle
Steering Based on Evaluative Feedback by
Reinforcement Learning, MLDM 2005.

[6] R. Finkelstein, EATR: Energetically Autonomous
Tactical Robot, DARPA Contract W31P4Q-08-C-
0292.

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 691

