
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 

Due to increasing complexity of tasks delegated to 
unmanned vehicles, their collective use is becoming of 
paramount importance for performing any reasonable jobs. 
An approach is offered where group behaviors are 
accomplished automatically rather than set up manually, as 
usual. Missions in the Distributed Scenario Language (DSL) 
can be executed jointly by communicating interpreters in 
robotic units. Scenarios like reconnaissance, camp security, 
convoy, mule, and EOD in DSL, oriented on different 
numbers of cooperating vehicles, are demonstrated. The 
approach may allow us to effectively manage any robotic 
teams, both homogeneous and heterogeneous, regardless of 
the number of vehicles in them. 
 
Keywords: unmanned systems, scenario language, 

robotic teams, swarms, distributed interpretation, 
reconnaissance, camp security, convoys, EOD, high-level 
management. 
 
 
1  Introduction 
 

With the world dynamics increasing due to global 
warming, numerous natural and manmade disasters, military 
conflicts, and international terrorism, using unmanned 
(ground, sea, underwater, and air) systems can alleviate 
many problems and save lives in hazardous environments. 
Because of the complexity of tasks delegated to unmanned 
solutions and still insufficient capabilities of existing robotic 
vehicles, their simultaneous, collective use may be of 
paramount importance to perform any reasonable jobs. 
Operating together, the unmanned groups, often called 
swarms, can fulfill the required objectives despite possible 
runtime damages to individual units. 

We are offering a novel approach to organization of 
unmanned swarms, oriented from the very beginning on 
parallel solutions in physical spaces, with swarm behaviors 
resulting naturally and accomplished automatically, rather 
than programmed manually. A mission scenario, written in a 

special high-level language and reflecting semantics of 
what to be done in a distributed space rather than details 
of implementation, is executed in a cooperative manner 
by dynamically networked unmanned units. 

The current paper is inspired by the European Land 
Robotic Trial ELROB 2008 [1], in which the authors 
participated. It was conducted to provide trials as close 
as possible to operational scenarios for UGVs/UAVs 
with focus on short-term realizable robot systems. The 
day and night trials were organized within the following 
five main scenarios: non-urban reconnaissance, camp 
security, transport convoy, transport mule, and explosive 
ordnance disposal. Only a limited number of robotic 
units was engaged in every scenario, just one or two, 
whereas every scenario could potentially be executed 
with much higher efficiency if using robotic teams with 
many units, which cooperate with each other. 

The paper reflects an initial state of the international 
project under sponsorship of Alexander von Humboldt 
Foundation (AvH) in Germany. Its aim is formalization 
of known mission scenarios in such a way that they 
could be performed by any available numbers of robotic 
vehicles, with the management burden shifted to self-
organized robotic teams--thus relieving human operators 
from tedious routines and allowing them concentrate on 
mission goals and overall efficiency. 

The main features of the Distributed Scenario 
Language and its parallel interpretation in distributed 
environments are briefed, with more details on the 
underlying paradigm and its applications easily 
obtainable from the previous publications [2-4]. The 
formalization and expression in DSL of the main 
ELROB 2008 scenarios is provided on a semantic level, 
with the scenarios to be potentially executed by any 
number of mobile robots, and overall management of 
robotic swarms fully shifted to the self-organized 
network of DSL interpreters. 

The scenario examples in DSL (unfortunately, without 
detailed comments, due to page limits) show 
compactness of the DSL code, which can be written on 
the fly, thus timely responding on dynamics of the 

 

 

Developing High-Level Management Facilities for 
Distributed Unmanned Systems 

 
Peter Sapaty 

Institute of Mathematical Machines and Systems, National Academy of Sciences 
Glushkova Ave 42, 03187 Kiev, Ukraine, sapaty@immsp.kiev.ua 

 
Klaus-Dieter Kuhnert 

Institute of Real-Time Learning Systems, University of Siegen 
Hölderlinstr. 3, D-57068 Siegen, Germany, kuhnert@fb12.uni-siegen.de 

 
Masanori Sugisaka 

Department of Mechanical and Electrical Engineering, Nippon Bunri University 
1727 Oaza Itiki, Oita, 870-0397, Japan, ms@alife-robotics.co.jp 

 
Robert Finkelstein 

Robotic Technology Inc.11424 Palatine Drive, Potomac MD, USA 
RobertFinkelstein@compuserve.com 

 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 686



 
environment and changing system goals. More on the 
underlying spatial algorithms and related DSL code 
interpretation will be in subsequent publications, including 
the forthcoming project report for AvH. 
 
 
2   Distributed Scenario Language (DSL) 
 

Our approach is based on the Distributed Scenario 
Language (DSL), describing what to do in distributed spaces 
rather than how to do, and by which resources, leaving the 
latter to an effective automatic interpretation in networked 
environments. The DSL main features include:  

• Association of different actions (which may be 
performed in parallel) with positions in physical, virtual, 
or combined spaces 

• Working with both information and physical matter 
• Runtime creation of distributed knowledge networks  
• Distributed decision making 
• Automatic command and control  

 
DSL has a recursive syntax that can be expressed on the 

top level as follows (square brackets are for an optional 
construct, braces mean construct repetition with a delimiter 
at the right, and vertical bar separates alternatives). 
 

wave             constant | variable | [ rule ] ( {wave , } ) 
constant            information | matter 
variable             nodal |  frontal | environmental 
rule                   evolution |  fusion | verification | essence 
evolution          expansion | branching | advancing | 

    repetition | granting 
fusion               echoing | processing | constructing |  

  assignment 
verification       comparison | membership | linkage 
essence              type | usage 

 
A rule is a general construct which can be: 
• Elementary arithmetic, string or logic operation 
• Hop in a physical, virtual, or combined space 
• Hierarchical fusion and return of (remote) data 
• Parallel and distributed control 
• Special context for navigation in space 
• Sense of a value for its proper interpretation 
Different types of variables, especially when used 

together, allow us to create efficient spatial algorithms 
which work in between components of distributed systems 
rather than in them. The nodal variables can store and 
access local results in the system points visited, while other 
ones can transfer data in space together with the evolving 
control (frontal variables) or access and impact the internal 
and external world (environmental variables). 

Due to peculiar syntax and semantics, the language 
parallel interpretation in distributed systems is transparent 
and straightforward, and does not need any central resources. 
DSL can dramatically simplify application programming in 
distributed environments, which is often much more concise 
and simple than in traditional programming languages.  
 
 
3   Distributed DSL Interpreter 
 

The DSL interpreter may be embedded in internet hosts, 
robots, mobile phones, or smart sensors (the interpreter can 

also be a human being herself, understanding and 
executing high-level orders in DSL and communicating 
with other humans or robots via the language syntax). 
The interpreter copies may be concealed, if needed (say, 
to work in a hostile environment); they can also migrate 
freely, collectively executing (mobile too) mission 
scenarios, resulting altogether in a flexible and 
ubiquitous system organization.  

The interpreter [3] consists of a number of specialized 
modules working in parallel and handling & sharing 
specific data structures, which are supporting both 
persistent virtual worlds and temporary hierarchical 
control mechanisms. The heart of the distributed 
interpreter is its spatial track system enabling 
hierarchical command and control and remote data and 
code access, with high integrity (or “consciousness”) of 
emerging parallel and distributed solutions, achievable 
without any central facilities. 

In application to robotic communities, the approach 
allows us to convert any group of mobile robots into a 
goal-directed cooperative system by integrating copies of 
the DSL interpreter, as a universal control module U on 
Fig. 1, with traditional robotic functionalities, like the 
ones described in [5]. (The figure uses pictures of mobile 
robots participated in the ELROB 2008 trial.) 
 

U

U

U U

U
U

U

U
U

U

 
 

Figure 1.  Heterogeneous robotic teaming using 
embedded DSL interpreters.  

 
Any mission scenario in DSL can start from any robot, 

covering and tasking the whole system (or its parts 
needed) at runtime and in parallel. Subordination 
between the units and dynamic command and control are 
established automatically--as a derivative of the mission 
scenario and current state of environment.  

Due to fully interpretive nature of the technology, the 
scenarios can self-recover from any point, timely 
reacting on failures of robots. The whole group may 
remain fully functional and global-goal-oriented even in 
case of indiscriminate damages to individual units. 
 
 
4  Non-urban / Reconnaissance 
 

For this scenario, it is supposed that a group of 
unknown vehicles is located in some distance in a non-
urban area (defined, say, with the position of a center and 
area’s radius), with security situation unclear there, so 
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the reconnaissance should be done by robotic vehicles for 
not risking own personnel. The objective is to go to this 
target area and search for vehicles with specific 
characteristics. If found, they should be examined in detail, 
with their parameters collected and reported to the control 
station.  

The general picture is shown in Fig. 2, where the 
reconnaissance facilities should first go to the target area (i.e. 
its center), observe the area by cameras/sensors to roughly 
locate most probable targets (by their size, for example). 
The next will be to move directly to these selected targets 
and sense & collect their detailed parameters, with sending 
the results to the control point where they are stored and 
analyzed. 

Start

Target
area

Target 
vehicles

Radius

Center
Find

Result 3

Move

Result 2

Result 1
Move

 
Figure 2. The reconnaissance scenario. 

 
Parallel solution. This solution in DSL may allow us to 

use as many reconnaissance vehicles as possible (a single 
one including), potentially involving individual vehicles for 
each target identified, for their detailed examination. 
 

 USER = ( 
 move (start); WHERE = center;  
 Targets = recognize (radius, features); 
 split (Targets); WHERE = VALUE;  
 collect (size, type, speed)) 

 
Explicitly sequential solution. The following DSL 

program just details navigation and organization procedures 
to execute the reconnaissance scenario in a strictly 
sequential way, which may be useful for optimization of the 
use of a single vehicle only. 
 
move (start); WHERE = center;  
Targets = recognize (radius, features); 
loop ( 
 (Next = withdraw (Targets, 1)) != nil;  
 WHERE = Next;  
 Result &= collect (size, type, speed));  
USER = Result  

 
Avoiding obstacles. The movement to the target area and 

inside it may be complicated due to presence of obstacles, as 
shown in Fig. 3. The following DSL program, for the move 
from Start to Center, uses an external procedure 
approach_or_stop to detect obstacles and stop to avoid 
collision, and the procedure suitable to find next 
suitable waypoint on the way to the destination, from which 
the move should continue. 

Start

Target
area

Target 
vehicles

Radius

Center
Find

Move

Obstacle

Next

Next

Stop

Figure 3. Avoiding obstacles. 
 
move (start); 
loop (approach_or_stop (center);  
      WHERE ! = center;  
      Next = suitable (depth, center);  
      WHERE = Next)  

 
 
5  Camp Security 
 

For the camp security scenarios, a defined urban area 
has to be monitored (think military camp) and this should 
be executed by robotic vehicles too, to minimize risk to 
human personnel. The objective is to detect and report 
irregularities in the area, like intruders, while acquiring 
their positions and imagery, and transmitting to control 
station. 

The general picture is shown in Fig. 4, where the camp 
units (numbered 1 to 6) are simultaneously patrolled by a 
number of robotic vehicles moving along the paths 
between and around the buildings. 
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Figure 4. Camp security scenario. 
 

Distributed campus map. The proper routing of 
vehicles and resolution of possible conflicts between 
them (like collision avoidance) can be assisted by the 
creation of a distributed map of the campus area (just 
reflecting Fig. 4) by the following DSL program (with 
node names reflecting X-Y coordinates of the crossings, 
and all links named r): 
 
create (#3_1; F1=A; r#2_1; F2=A;   
 r#1_1; F3=A; r#0_1; 
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 (r#0_2; r#1_2; r#F3, (r#2_2; r#F2,    
  (r#3_2; r#F1))), 
 (r#0_0; r#1_0; r#F3, (r#2_0; r#F2,     
  (r#3_0; r#F1)))) 

 
Random movement. The next program organizes duty 

performance by three parallel processes (which may be 
executed by three robots) using the created distributed map, 
with random choice of the next-hop crossing and activation 
of the external service procedure move_check_report 
to analyze the local security situation while on the move. 
 
hop (0_1, 2_2, 3_0);  
WHERE = CONTENT; 
repeat ( 
 or ( 
  (hop (link (random));  
   grasp (Mark == nil; Mark = 1);  
   (hop (BACK); Mark) = nil;  
   move_check_report (CONTENT)), 
  stay)) 

 
Movement via predetermined routes. If to use 

predetermined routes only, like shown in Fig. 5 (one route 
using links named r1 and another one r2), the collisions 
between robots can be avoided in full. 
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Figure 5. Using predetermined routes 
 

Additional links r1 and r2 in the campus map can be 
installed by the following DSL program: 
 
Linkup ( 
 (#0_2; r1#1_2; r1#1_1; r1#1_0; r1#0_0;   
  r1#0_1; r1#0_2), 
 (#3_2; r1#2_2; r1#2_1; r1#2_0; r1#3_0;  
  r1#3_1; r1#3_2)) 

 
And two independent spatial processes navigating the 

campus via the new links (which may engage two robots) 
can be organized by the following parallel DSL code: 
 
(hop (0_1); Flink = +r1), 
(hop (3_0); Flink = +r2);  
WHERE = CONTENT; 
repeat ( 
  hop (link (Flink));  
  move_check_report (CONTENT)) 

 
Any imaginable combinations of different types of 

simultaneous movement through the camp (like those by 
predetermined routes and/or by free, random, wandering) 

with collision avoidance can also be easily organized in 
DSL. 
 
 
6  Transport Convoy  
 

Imagine there is a delivery for a camp located in some 
distance. The objective is to move at least two vehicles to 
the target location, where only the first one can be 
manned and the second should follow the route of the 
first one, on a certain distance from it. We will consider a 
fully robotic solution for such a convoy, with two and 
also any number of vehicles, where only the first vehicle 
knows (and follows) waypoints toward the target 
location, while others dynamically chaining with, and 
following the previous ones on the move. 

Two-unit convoy. It is represented by the 
communicating Leader and Follower, where the 
first one defines its movement by a sequence of 
waypoints, and the second one, regularly requesting the 
Leader, moves to the positions previously occupied by it, 
while keeping a certain threshold distance. This is shown 
in Fig. 6, and by the DSL program that follows 

Waypoints

Range

Leader
Follower

Start Leader, 
Follower

 
Figure 6. Two-unit convoy. 

 
move (start);  
(create (Leader);  
 Waypoints = (w1, w2, w3, …);  
 loop ( 
  (Next = withdraw (Waypoints,1))!= nil;    
   WHERE = Next)),  
(create (Follower);  
 sling ( 
  Lcoord = (hop (range, any); WHERE);  
  distance (WHERE, Lcoord) > threshold;    
  WHERE = Lcoord)) 

 
Multiple-unit convoy. A scenario for the convoy with 

any number of chained processes (to be materialized by 
robotic units) is described by the following DSL program 
and depicted in Fig. 7. For this case, only the first 
process is a pure leader and the last process is a pure 
follower, while all other processes combine both 
functionalities, i.e. being followers for the previous 
processes and leaders for the subsequent ones. 
 
move (start); 
cycle (N < number; create (N += 1)); 
(NAME == 1; Waypoints = (w1, w2, w3, …);  
 loop ( 
  (Next = withdraw(Waypoints, 1))!= nil;    
   WHERE = Next)), 
(NAME != 1;  
 sling ( 
  Lcoord = (hop (range, NAME-1); WHERE);  
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  distance (WHERE, Lcoord) > threshold;  
  WHERE = Lcoord)) 

Waypoints
Range

Leader

Leader
Follower

Leader
Follower

Leader
Follower

Follower

Start

1

5
3

4 2

Nodes:
1, 2, 3, 4, 5

 
 

Figure 7. Multiple-unit convoy. 
 
7  Transport Mule  
 

Fir this scenario, there are two camps with a certain 
distance in between, and a cargo with a given weight should 
be transferred between the camps. We will consider here 
different possibilities to deliver payload between the camps, 
using unmanned vehicles as “mules”.  
 

In a single piece. This may be the case if cargo’s weight 
allows it to be put on a single vehicle, as shown ion Fig. 8. 

Cargo
Campus2Campus1

 
Figure 8. Single piece cargo delivery. 

 
The related DSL program will be as follows: 

 
move (Campus1);  
frontal (Cargo) =“substance”; 
move (Campus2); Store = Cargo 

 
Shuttling between camps. For this option, the process 

shuttles as often as possible between the two camps after 
partitioning the cargo into portions for the weight allowed, 
unless all the cargo is delivered, as shown in Fig. 9 and by 
the following program. 

Limit
Campus2Campus1

 
Figure 9. Shuttling delivery. 

 
move (Campus1); frontal (Load); 
Cargo = “substance”; Limit = 50; 
loop ( 
 or ( 
 (weight (Cargo) > Limit;  
  Load = withdraw (Cargo, Limit)), 
 (weight (Cargo) > 0; Load = Cargo)); 
 hop (Campus2); Store += Load; 
 hop (Campus1)) 

 
Multiple, parallel delivery. For this case, different 

processes (vehicles) are considered to be independent from 
each other, each moving to the destination as quickly as 
possible on its own (see Fig. 10 and the following program). 

Limit

Limit
Limit

Limit
…

Campus2Campus1

 
Figure 10. Parallel cargo delivery. 

 
move (Campus1); frontal (Load); 
Cargo = “substance”; Limit = 50; 
cycle ( 
 or ( 
 (weight (Cargo) > Limit;  
  Load = withdraw (Cargo, Limit)), 
 (weight (Cargo) > 0; Load = Cargo))); 
move (Campus2); Store += Load 

 
Multiple, convoy delivery. For this scenario, the 

vehicles, each with a limited partition of cargo, are 
dynamically chaining in a column for a cohesive 
movement towards the destination (see Fig. 11 and the 
subsequent DSL program). 
 

Limit Limit Limit …Limit Campus2Campus1

 
Figure 11. Delivery in a convoy. 

 
move (Campus1); frontal (Load); 
Cargo = “substance”; Limit = 50; 
cycle ( 
 Or ( 
  (weight (Cargo) > Limit;  
   Load = withdraw (Cargo, Limit)), 
  (weight (Cargo) > 0; Load = Cargo));    
 create (N += 1)); 
(NAME == 1; move (Campus2)), 
(NAME != 1;  
 loop (WHERE != Campus2;  
       WHERE = (hop (NAME-1); WHERE)); 
Store += Load 

 
 
8   Explosive Ordnance Disposal 
 

Explosive Ordnance Disposal (EOD) means the 
detection, identification, onsite evaluation, rendering 
safe, recovery, and final disposal of Unexploded 
Ordnance (UXO) including detonation and burning. It is 
often said that the EOD operation is a 3 Ds one, which is 
Dangerous, Dirty and Demanding (or Difficult) job. 
Using robotic vehicles, especially multiple ones, is 
therefore becoming the most promising EOD option.  

Various kinds of EOD scenarios for navigation and 
examination of the target territory may be offered. We 
will just hint here on the simplest two options, easily 
expressible in DSL. 

Sequential territory search. This represents a single-
thread process (oriented on a single vehicle), where the 
whole territory is incrementally scanned unless all being 
searched, as described by the following program and 
depicted in Fig. 12. 
 
X1 =…, X2 =…; Y = Y1; Y2 =…; DY =…; 
loop (WHERE = (X1, Y); (Y += DY) < Y2;  
      WHERE = (X2, Y); (Y += DY) < Y2) 
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Figure 12. Sequential navigation. 
 

Parallel territory search. This can be represented by a 
number of independent processes, each starting from a 
different location, and navigating altogether the whole 
region in parallel, as depicted by Fig. 13 and explained by 
the DSL program that follows. 

X1 X2

Y1

Y2

DY

 
Figure 13.  Parallel navigation. 

 
X1 = …; X2 = …; Y1 = …; Y2 = …; DY = …; 
frontal (Y) = Y1; DDY = 0; 
cycle ((Y += DDY) < Y2; DDY += DY);  
WHERE = (X1, Y); WHERE = (X2, Y) 

 
 
9  Conclusions 
 

Programming multi-robot scenarios in distributed and 
dynamic environments using DSL may not be more 
complex than, say, programming routine data processing 
tasks in traditional languages like Fortran, C, or Java, where 
the latter can run on parallel computers using any available 
number of processors.  In our case, any multi-robot system 
may also be treated as a universal parallel computer (more 
correctly: parallel machine, as it operates not only with 
information but with physical matter or objects too).  

The mission scenario in DSL may set up top level 
semantics of what, and generally how, should be done in a 
distributed space, and which key decisions should be taken 
in different spatial locations, to fulfill the objectives, 
regardless of the number of available robotic units, which 
may vary overtime (as some robots can be destroyed while 
others entering the operational field at runtime). This may 
essentially (and in many cases completely) relieve the 
human manager from traditional tedious routines of 
handling distributed multi-component systems, shifting the 
organizational burden to parallel scenario interpretation in 
the self-organized network of DSL interpreters.  

This also gives us new opportunities for self-recovery 
in hostile environments as, first, the DSL scenarios may 
be free from mentioning any hardware robotic 
components (like computational problems in Fortran not 
mentioning computer registers or functional units and 
data transfers between them), and failures or recovery of 
particular robots may not be the business of the 
application program but rather of the internal system 
organization. And, second, due to fully interpretative 
nature of DSL, self-spreading scenarios in it may 
themselves recover from any point (robot), or even be 
self-relaunching from the beginning in most unfavorable 
situations. Using DSL, the human operator may 
effectively control distributed robotic swarms regardless 
of the number of units in them, just like controlling a 
single robot remotely, due to high self-organizational 
level of the swarms within the technology offered. 

The current work is in progress, and in parallel with 
re-implementation of the technology on new, robotic, 
platforms (its existing public domain is mostly used for 
intelligent network management), we are considering 
various scenarios of engagement of heterogeneous 
unmanned systems for solving complex tasks. One of 
these is investigation and development of exemplary 
behaviors integrating energy (e.g. biofuel) seeking 
foraging robots [6] with other types of vehicles having 
specific payloads (the latter supposedly consuming the 
energy produced by the former). The foraging robots are 
dedicated to operate autonomously and for a long time in 
remote unpopulated areas, and heterogeneous swarms 
with them may represent a promising approach for 
advanced applications. 

We also hope that the current project may help the 
next, ELROB 10, event to use more cooperating robots 
and even their swarms within the scenarios discussed, 
and, possibly, quite new ones. 
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