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Abstract: DNA computation as a new paradigm has the computational power of molecules for information processing 

and many computational models have been proposed for solving mathematical problems in laboratory experiments. In 

order to achieve the correct computation, a set good of DNA sequences is crucial, because the code determines the way 

to process information on sequences in the experiments. Much works have focused on designing the DNA sequences to 

archive a reliable molecular computation and many algorithms have been proposed to obtain a set of good DNA 

sequences. In this paper, Ant Colony System (ACS) is proposed to solve the DNA sequence design problem. ACS used 

some ants to get their solutions based on the pheromone in their colony. A model is prepared which consists of four 

nodes representing four DNA bases. The results of the proposed approach are compared with the other methods such as 

Genetic Algorithm. 
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I. INTRODUCTION 

DNA computation has been extensively researched 

as a new computation paradigm in recent ten years. It 

has the ability to perform calculation using specific 

biochemical reaction between different DNA bases by 

Watson-Crick complementary base pairing, and has a 

number of useful properties such as massive parallelism 

and a huge memory capacity [1].  

Although there have been many achievements, DNA 

computing faces some hurdles due to the technological 

difficulty of handling biochemistry process. To 

overcome these drawbacks, some works have focused 

on the design of DNA sequences to reduce the 

possibility for illegal reactions [2]. 

The necessity of DNA sequence design appears not 

only in DNA computation, but also in other 

biotechnology fields, such as the design of DNA chips 

for mutational analysis and for sequencing [2]. In these 

approaches, sequences are designed such that each 

element uniquely hybridizes to its complementary 

sequence, but not to any other sequence. Due to the 

differences in experimental requirements, however, it 

seems impossible to establish an all-purpose library of 

sequences that effectively caters to the requirements of 

all laboratory experiments [3]. Although the design of 

DNA sequences is dependent on the protocol of 

biological experiments, it is highly required to establish 

a method for the systematic design of DNA sequences, 

which could be applied to various design constraints [4].  

Various kinds of methods and strategies for DNA 

sequence optimization have been proposed to date, such 

as template-map strategy [5], graph method [6], 

stochastic methods [7], and nearest-neighbour 

thermodynamic [8]. An Ant Colony Optimization 

(ACO) approach for DNA sequence design has been 

previously proposed [9], which used thermodynamic 

values as heuristic information. However, in DNA 

sequence design, since there is actually no information 

could be used as heuristic information, in this study, 

DNA sequences are designed based on Ant Colony 

System (ACS) without any heuristic information.  

 

II. THE DNA SEQUENCE OPTIMIZATION 

The objective of the DNA sequence optimization 

problem is basically to obtain a set of DNA sequences, 

where each sequence is unique or cannot be hybridized 

with other sequences in the set. In this paper, the 

objective functions and constraints from [9] are used. 

Two objective functions, namely Hmeasure and similarity, 

are chosen to estimate the uniqueness of each DNA 

sequence. Moreover, two additional objective functions, 

which are hairpin and continuity, are used in order to 

prevent secondary structure of a DNA sequence. 

Furthermore, two constraints, which are GCcontent and 

melting temperature, are used to keep uniform chemical 

characteristics. 

DNA sequence optimization is actually a multi-

objective optimization problem. However, the problem 

is converted into single-objective problem, which can 

be formulated as follows: 

 

 
 ∑=

i
iiDNA ff ωmin  (1) 

 

subjected to Tm and GCcontent constraints, where fi is 

the objective function for each i∈{Hmeasure, similarity, 

hairpin, continuity}, and ωi is the weight for each fi. In 

this study, the weights are defined by the user.   

  

III. ANT COLONY SYSTEM 

The studies of natural systems and the models of 

these systems have been beneficial for solving difficult 
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and complex real-world problems. ACO, as one of the 

natural systems, is inspired by the behavior of ants in 

finding the shortest path from the nest to the food place.  

There are several additional or modification 

algorithms of ACO have been proposed, such as ACS, 

which has achieved performance improvements through 

the introduction of new mechanisms based on ideas not 

included in the original AS [10] Those mechanisms are 

state transition rule, global updating rule, and local 

pheromone updating rule [11]. 

 

A. State transition rule 

Difference between ACS and AS is in the decision 

rule used by the ants during the construction process. 

The ACS transition rule, also referred as a pseudo-

random-proportional rule was developed to explicitly 

balance the exploration and exploitation abilities of the 

algorithm. In ACS the probability for an ant to move 

from city i to city j depends on a random variable q and 

q0 likes shown in Eq. (2); 
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where q is a uniformly distributed random variable [0,1], 

q0 value is between 0 and 1, and S is another random 

variable selected according to the probability 

distribution.  

 

B. Global updating rule 

The global pheromone update is applied at the end o

f the each iteration by only one ant, which can be either 

the iteration-best or the best-so-far. The global updatin

g rule is formulated as, 
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where ρ is the pheromone evaporation for global u

pdating and ),( srτ∆
 

shown in Eq. (4). 
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where Q is the sum of all objective calculated for a 

sequence. 

 

C. Local pheromone updating rule 

The local pheromone update is performed by all the 

ants after each construction step using Eq. (5); 
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where ζ ∈ [0, 1] is the pheromone decay coefficient, and 

τ0 is the initial value of the pheromone and in Eq. (5); 

 

 
C/10 =τ

 
(6) 

 

where C is average values of Q for a set sequences, 

which are obtained randomly in the initialization 

process. 

After that, each ant applied a state transition rule as 

defined in Eq. (2) to construct the solution until all ants 

have build a complete solution. After that, a local 

pheromone updating is applied. The objective function 

is calculated based on the problem being solved and 

then the global updating rule is applied based on Eq. (3) 

for all solutions. 

 

IV. METHODOLOGY 

The implementation of process in solving the DNA 

sequence design problem has been started by modeling 

the problem based on ACO methods. After that, the 

algorithms are developed to achieve the best solution of 

the problem. 

In order to model the DNA sequence design problem 

into ACO methods, a model similar to finite state 

machine, which has four nodes, is proposed. In this 

model, the nodes represent A, C, G, and T of DNA 

bases. Every node is connected to each other, including 

its own node, as shown in Fig 1. 

As illustrated in Fig 1, if an ant is placed (randomly) 

at node A (Fig 1a), and then if the ant moves to node T 

(Fig 1b), the formed path by the ant can be translated 

into ‘AT’ sequence of DNA. Next, if the ant moves from 

node T to node C (Fig 1c), the DNA sequence ‘ATC’ is 

formed. The tours of the ant continue until the number 

of required sequences has been produced. 

Since DNA sequence design problem offers no 

information, which can be directly used as heuristic 

information, this model only uses pheromone 

information for ACO computations. Taillard and 

Gambardella [12], in their proposed approach, Fast Ant, 

also have used pheromone information only for 

Quadratic Assignment Problem (QAP). 

During the initialization step, all parameters, such as 

α and ρ are set determined based on the default 

parameters for ACO [13] as presented in Table 1. The 

DNA parameters are initialized as listed in Table 2 [4]. 

In this paper, a multi-objective optimization problem 

is simplified into single-objective problem. Since it 

difficult to find the proper weight value to every 

objective [14], the weights in Eq. (1) are set as 1. 

In the main process, every ant is placed randomly at 

the start node, at first. After that, every ant will be 

moving from one node to the other nodes to construct 

the DNA sequence. During the tour, the ant chooses the 

next node by applying the state transition rule, as in Eq. 

(2). 

Since the required solution is a set of DNA 

sequences, a mechanism is needed to store the DNA 

sequence in an archive to be analyzed. The updating 

archive process is  done only when  the total of DNA 
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Fig 1. Finite state machine as a model for constructing a 

DNA sequence. 

 

Table 1. Parameter for Ant Colony Optimization 

Parameter ACS 

α 

β 

ζ 

ρ 

q0 

N 

- 

0 

0.1 

0.1 

0.9 

half of ants 

Number of Sequences = 7 (no. of ants- nk) 

Length of DNA Sequence = 20 (no. of tours) 

Max. Number of Iteration (tmax) = 500 

 

Table 2. DNA Sequence Parameter 

DNA Sequence Parameter 

Parameter Value 

hmeasure 
hcon 

hdis 

6 

0.17% 

similarity 
scon 

sdis 

6 

0.17% 

t (continuity threshold) 2 

hairpin 
Rmin 6 

Pmin 6 

GC% 
Min 50 

Max 60 

Tm 
Min 40

o
C 

Max 80
o
C 

 

The ACS algorithm for DNA sequence optimization 

is summarized in Algorithm 1; 

 
Algorithm 1. Ant Colony System for DNA Sequence Optimization 

// --- Initialization step  

Initialize parameter t, α, ρ, q0, nk, N, and all DNA parameters,    

      such as hcon, hdis, scon, sdis; 

Calculate τo; 

For each link(i, j) do 

   τ (i, j) = τo;     // --- Pheromone initialize 

end 

t= 0;      // --- initialize no of iteration. 

Repeat 

   Repeat 

      Place all ants, k =1, …, nk; // --- (nk = number of ants) 

      For each ant k =1, …, nk do 

         Repeat // --- State Transition Rule 

            Each ant applies a state transition rule (Eq. 34)  

                  to incrementally build a DNA sequence; 

            A local pheromone updating rule (Eq. 32) is  

               applied;   

         Until all ants have build a complete a DNA    

               sequence;    

      Next 

      If no. of DNA sequences in archive are equal with the  

           number of ants (full) Then 

        Calculate all DNA sequences in archive bases on four     

              objective functions and then sort in descending  

              order ; 

        N-DNA sequences which have higher value in archive  

              is removed;                 

      EndIf 

      Calculate all DNA sequences bases on four objective  

            functions and then sort in ascending order; 

      For each DNA sequence do 

         Checked for GCcontent and Tm constraints;  

         If passed and archive is not full Then stored DNA  

            sequence to archive; 

      Next 

      A global pheromone updating rule (Eq. 30) is applied;   

  Until number of DNA sequences in archive are equal with   

        the number of ants; 

  t = t + 1; 

// --- maximum no. of (tmax) iteration is reached. 

   Until End_Condition  

 

 

sequences in archive is equal to number of ants (nk). The 

process calculates the objective values for each DNA 

sequence and sorted them in descending order. The N-

first worst DNA sequences will be selected and the next 

process, storing archive, remove them from the archive 

to be replaced by N new DNA sequences. 

The storing archive process also calculates the 

objective values for each new DNA sequence and sorted 

them by ascending order. The DNA sequences are 

placed in the archive started from the smallest objective 

values, if the range of GCcontent and melting temperature 

constraints are satisfied. The process continues until the 

archive is full. In the last process, global updating rule 

is applied for all new DNA sequences. 

 

V. RESULTS AND DISCUSSION 

Based on the proposed model and algorithm, one 

hundred independent runs of the ACS approach for 

DNA sequence design have been executed, and average 

of over these runs reported. The comparison results 

between our result with previous work [9], and GA 

approach taken from the result of Deaton et al [15] as 

shown in Table 3 and Fig 2. 

Since this optimization process is finding the 

minimum values for the objective function, the smallest 

value is the best. Also, since the multi-objective 

problem is converted into single objective problem, the 

overall results only considered by the total objective 

values. 

Table 3 and Fig 2 show the new proposed approach 

obtained the much lower in total objective values than 

the GA [15] and ACS [9]. The new approach has quite 

lower in  continuity,  hairpin, and Hmeasure  objective  
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Table 3. The comparison result of ACS approach, ACS 

[9], and GA [15] 
The Average value of objective for 100 times running of ACS 

approach 

 C Hr Hm Sm Total 

Average 1.0 0.1 35.4 58.8 95.4 

Standard Deviation 1.2 0.3 5.0 4.5 2.31 

The DNA Sequences taken from [9] 

Average 0.0 0.0 54.1 51.9 106.0 

Standard Deviation 0.0 0.0 12.4 7.8 10.5 

The DNA Sequences taken from [15] 

Average 11.7 0.6 63.4 48.3 124.0 

Standard Deviation 14.8 1.5 7.1 7.4 14.7 

 

 

 
Fig 2. The comparison result of ACS approach, ACS 

[9], and GA [15] 

 

values, but has higher in similarity than other results. 

For sequences generated by ACS [9], no continuity is 

observed, whereas the continuity value of sequences 

generated by the proposed approach and GA [15] are 

1.0 and 11.7, respectively. 

 

VI. CONCLUSION 

ACS was implemented without heuristic information for 

DNA sequence optimization with four objective 

functions: Hmeasure, similarity, continuity, and hairpin 

and two constraints: GCcontent and melting temperature. 

The DNA sequences obtained from proposed approach 

were compared with those designed by previous work 

and GA approach. The results show that ACS can 

generate relatively better in total objective values than 

other approaches. 
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