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Abstract

Recently, the demand for odor processing appara-
tus in the fragrance and food industries has increased.
In this paper, we construct a neural network model of
the olfactory system as basis for artificial organolep-
tic tests that combines possesses the advantages of
both human sensory evaluation and machine olfac-
tion. The simulation results indicate that the model
can predict odor coding on the glomeruli by appro-
priately adjusting the parameters involved. Further,
the model can simulate the feature extraction ability
known Attention.

1 Introduction

As considerable evidence has been presented to
show that odors have an effect on memory and emo-
tions [1], the importance of odors has begun to be
recognized beyond their role as components of flavor.
For this reason, the demand for odor processing appa-
ratus in the fragrance and food industries is increasing
[2].

Two methods of odor assessment developed so far
are the sensory evaluation method and machine ol-
faction [2]. Generally, the sensory evaluation method
is employed because it is based on the characteristics
of human perception, although, individual differences
due to factors such as personal preference or physi-
cal condition can affect the evaluation results. Ma-
chine olfaction, in contrast, is an objective assessment
method; nevertheless, it tends to ignore the nature of
odor perception. Accordingly, a novel odor assessment
method combining the advantages of both human sen-
sory evaluation and machine olfaction making it suit-
able for artificial organoleptic tests is required. To de-
velop such a method, it is first necessary to predict how
odorant information is coded in the brain to obtain
the perception characteristics of animals. The mecha-
nisms of feature extraction from the neuro-coded odor

information must then also be predicted.

Although the ideal scenario would be to analyze the
human olfactory system, current biological knowledge
regarding the coding manner of odorant information
in the human brain remains limited. Given this re-
striction, the present study focuses on the olfactory
system of mice.

An odor is a combination of more than 400,000
kinds of odorant molecules. Mice have approximately
1,000 kinds of odorant receptors, each of which is
responsible for detecting a specific group of odorant
molecules [3]. The outputs of the receptor neurons
evoke an odor-specific activity pattern on glomeruli
[4, 5]. As this activity pattern represents fundamen-
tal information for odor recognition, it is considered
closely linked to the characteristics of perception. We
constructed a neural network model [6] using biological
data on glomerular activity patterns [5] as inputs, and
attempted to simulate the perception characteristics
of mice. The model also employed a feature extrac-
tion mechanism for Attention [7] in which the mice
would focus on some of the important molecules in
odors. The results of the computer simulation were
compared with ones of behavioral experiments [7], and
it was confirmed that the model could predict the dis-
crimination ability of mice. However, the scope of our
model was limited to odorants with known glomerular
activity patterns.

In this paper, we report on the extension of the
model to enable the prediction of glomerular activity
patterns from odorant properties. For this purpose,
3-layered feed-forward neural network was added and
trained by using a known biological data set. Pre-
dicted activity patterns were ued as the input of the
model for further Attention processing. The simula-
tion results were then examined through comparison
with the odor discrimination rates obtained from be-
havioral experiments on mice.
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Figure 1: The olfactory system of mice.

2 Biological insight

2.1 Olfactory system of mice

Fig. 1 shows the basic structure of the olfactory sys-
tem in mice, which consists of three parts: receptor
neurons, the olfactory bulb and the piriform cortex.
Receptor neurons that distributed on the surface of
the nasal chamber express single receptor from among
1,000 different ones, and bind to specific odorants [3].
When odorant molecules bind to the receptor, its neu-
ron is activated and sends signals to the olfactory bulb.
The axons from the receptors that express the same
gene terminate at the same point on the surface of the
olfactory bulb [4]. The terminals of these axons form
a small, round cluster called a glomerulus. A 2D map
of glomerular distribution can be associated with re-
ceptor genes as well as odorants, and is thus called an
odor map [4].

Besides the glomeruli, mitral cells and granule cells
are the principal neurons in the olfactory bulb. Sig-
nals from the glomeruli are inputted to the mitral cells,
which are interconnected via the excitatory synapse.
The granule cells receive inputs from the mitral cells
and send inhibitory signals back to them. In general,
the olfactory bulb is considered to perform feature ex-
traction [8].

The mitral cells transmit the signal to the pyra-
midal cells in the piriform cortex, which then trans-
mit signals back to the granule cells in the olfactory
bulb and indirectly inhibit the mitral cells. The piri-
form cortex is divided into the anterior piriform cor-
tex (APC) and the posterior piriform cortex (PPC);
the division of their functions remains slightly unclear.
Generally, the piriform cortex is believed to be respon-
sible for the identification of odors [9].

2.2 Attention mechanism in the olfactory
system

Okuhara et al. [7] conducted a series of odor dis-
crimination experiments on mice [7]. First, the mice
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Figure 2: Results of the odor discrimination experi-
ment.

were trained to select a rewarded odor, such as [IA, Ci,
EB] composed of three types of odorant. They were
then required to discriminate among other odors that
contained elements in odor [IA, Ci, EB], such as [IA]
or [IA, EB]. Fig. 2 outlines the results of the odor dis-
crimination experiment performed with 10 mice, and
indicates that most of them had difficulty in discrimi-
nating between [IA, EB] and [IA, Ci, EB]. This implies
that they focused on a combination of the odorants
[IA] and [EB] when learning the odor [IA, Ci, EB].
This mechanism is called Attention, and contributes
significantly to the odor perception characteristics of
mice as described above.

3 Model of the olfactory system of
mice

3.1 Structure of the proposed model

Fig. 3 shows the structure of the proposed neural
network model, which consists of three parts: odor
reception, the olfactory bulb and the piriform cortex.

The odor reception model is a feed-forward neural
network of 3 layers: which are the preprocessing layer
(l = 1), the odorant layer (l = 2) and the receptor
layer (l = 3). The neuron populations for each layer
(lN) are 1N = 80, 2N = 500, and 3N = 1, 805, re-
spectively. The olfactory bulb model consists of the
Glomerular layer (l = 4), the Mitral layer (l = 5),
and the Granule layer (l = 6). The neuron popu-
lations in the olfactory bulb are 4N = 5N = 6N =
1, 805, These populations were determined based on
the actual number of glomeruli distributed on the ol-
factory bulb [10].

The piriform cortex model consists of an APC layer
(l = 7) and a PPC layer (l = 8) corresponding to
the anterior piriform cortex and the posterior piriform
cortex, respectively. The neuron populations of the
APC and the PPC layers are 7N = 1, 000 and 8N =
100, respectively.
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Figure 3: Structure of the proposed model. The activity pattern of glomeruli is cited from literature [5].

The connections between each layer in the olfac-
tory bulb model and the piriform cortex model are
set up based on the structure of the olfactory system
described in Section 2.1, with the exception that the
interconnections in each layer are not included in the
model for simplification. In addition, a single neuron
layer Y (l = 9) is artificially introduced as the output
of the model.

The model takes the odorant properties as the input
from the preprocessing layer. Since there are approx-
imately 400,000 kinds of odorant (forming extremely
high-dimensional information), it is impossible to in-
put the odorant information to the model through bi-
nary coding. The properties of each odorant are there-
fore broken down into 16 numeric properties as listed
by Johnson et al. [11] along with their corresponding
activity patterns.

In order to normalize the properties with different
units and orders, the preprocessing layer converts the
value of the properties into activated neuron num-
bers. This method is introduced based on the con-
cept of population coding [12]. The neurons in the
preprocessing layer are divided into 16 groups, each
of which receives a different kind of odorant property.
The input to the neurons in the preprocessing layer
is given by the following equation:
1us(t) = Pi(mo), (s = (i − 1)K + k, k = 1, 2...K), (1)

where 1us(t) is the input to the sth neuron in the
preprocessing layer (l = 1) at time step t, mo is the
mth odorant in odor O, Pi is the ith numeric property
of the odorant mo, and K is the maximum number of
neurons responsible for property Pi. The activities of
the neurons are given by the following sigmoid func-
tion:

1Us(t) =
1

1 + exp{−1εs(1us(t) − 1θs)}
. (2)

The outputs of sigmoid neurons in other layers are also
calculated using the above equation. The threshold
1θs and the gradient 1εs of the sigmoid function are
determined according to the corresponding property
by the following equation:

1θs = k
(Pi,max − Pi,min)

K
, (3)

1εs = Cs
(Pi,max − Pi,min)

K
, (4)

where Pi,max and Pi,min are the maximum and mini-
mum values of the property Pi in an odorant data set,
and Cs is a constant.

The output of the preprocessing layer (l = 1) is in-
putted to the odorant layer (l = 2) through a connec-
tive weight matrix 1W(t). The input to the odorant
layer is given by the following equation:

2un(t) =
∑

s

21wns(t) 1Us(t), (5)

where 2un(t) is the input to the nth neuron in the
odorant layer, and 1wns(t) is the connective weight
between neuron units n and s, which is an element in
the connective weight matrix 21W(t).

The output of the odorant layer is inputted to the
receptor layer (l = 3) through 32W(t) in the same
manner as the equation (5).

The output of the receptor layer (l = 3) is passed
to the glomerular layer (l = 4). According to Lin et al.
[13], the glomerular activity of an odorant mixture O
can be represented by binary addition of the activities
evoked by its odorant components. Thus, the input
and output of the Glomerular layer is determined by
the following equation:

4ue(t) = max[3Ur(t)|1o...
3Ur(t)|M o] (6)
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The output 4Ue(t), which is calculated by equation
(2), is an element in the activity pattern vector 4U(t).
Each element corresponds to a divided lattice of the
activity patterns provided by Johnson et al. [5], as
shown in Fig. 3.

The output of the Glomerular layer is input to the
Mitral layer on a one-to-one basis. The detailed struc-
ture of the olfactory bulb and piriform cortex part is
described in our previous paper [6], where the inputs
and outputs of each layer are determined in the same
manner as described above.

The inputs of the newly introduced Y (l = 9) layer
represent the output of the model. Its output is deter-
mined by the input from Mitral layer as the following
equation:

9U1(t) =
exp{−9ε1(9u1(t) − 9θ1)}

1 + exp{−9ε1(9u1(t) − 9θ1)}
. (7)

To predict the glomerular activity patterns and per-
ception characteristics affected by attention, the con-
nective weights appearing in each equation must be
appropriately adjusted. The next subsection describes
the learning algorithm of the model.

3.2 Algorithm of the learning phase

The learning algorithm consists of 2 steps, whose
details are described in this subsection.

3.2.1 The 1st step of the learning phase

In the 1st step, the connective weights 21W(t) and
32W(t) are adjusted for accurate prediction of the ac-
tivity patterns for the Glomerular layer from the in-
put odorants’ properties as given by the training set.
The connective weights are adjusted to minimize the
error energy E:

E =
1
2

4N
∑

i

ei =
1
2

4N
∑

i

(U4
i − ai)2, (8)

where ei is the mean square error (MSE); U4
i is the

output of the glomerular layer, and ai is the activity of
actual glomeruli in the ith lattice. For the implemen-
tation of weight adjustment, the RPROP algorithm
proposed by Riedmiller et al. [14] is utilized. This
algorithm allows fast error convergence with a reason-
able computer memory requirement. The connective
weights are iteratively adjusted until a preset maxi-
mum iteration number is reached.

3.2.2 The 2nd step of the learning phase

In the 2st step, the connective weights in the olfactory
bulb and piriform cortex are modulated based on the
algorithm proposed in [6]. Since most of the computa-
tional functions of the olfactory system, especially the
connection from the piriform cortex to the olfactory
bulb, are not yet clearly understood, signal transduc-
tion or connective weight modulation are hypothesized
based on the odor discrimination experiment outlined
in Section 2.2 [7]. We assume that the connection from
the piriform cortex to the olfactory bulb plays a role in
extracting the most activated regions in the glomeruli.
With regard to these assumptions, we propose a learn-
ing algorithm that consists of 3 steps outlined below.

In the 1st step, the connective weights 75W(t) and
67W(t) are modulated to subtract the background ac-
tivity from the activated part of the Mitral layer using
the following equation:

75Wzb(t+1)=α75Wzb(t) + β5Ub(t)|AO
7Uz(t)|AO, (9)

67Wgz(t+1)=α67Wgz(t) + β7Uz(t)|AO
5Ub(t)|back, (10)

where α denotes the forgetting term, and β is the
learning rate. As a result, when an odor A is input
through the connective weights 75W (t) and 67W (t),
the Granule layer can inhibit the background activity
of the Mitral layer.

In the 2nd step, the most activated neurons in
the Glomerular layer are extracted. The connective
weights between the Mitral layer and the PPC layer
are assumed to form a competitive system, and the
corresponding connective weights are adjusted accord-
ing to Amari et al. [15].

In the 3rd step, the activity pattern of the Mitral
layer resulting from the 2nd step is memorized by ad-
justing the connective weights 95W(t) as in the follow-
ing equation:

95W1b(t) = 5Ub(t)|AO. (11)

This adjustment enables the model to compare the
features of the memorized odor to the inputted odors
using the comparison algorithm described in the next
subsection.

3.3 Comparison algorithm
In the comparison phase, an arbitrary odor B is

inputted to the model. The input to the Y layer can
be calculated as follows:

9u(t)|BO =
∑

b

95W1b(t)5Ub(t)|BO

=
∑

b

5Ub(t)|AO
5Ub(t)|BO. (12)
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Figure 4: Simulation results of aldehydes.

Accordingly, calculating the input to the Y layer is
equivalent to calculating the correlation between the
current output 5Ub(t)|BO and the memorized output
5Ub(t)|AO of the Mitral layer. The correlation is then
converted to an index of dissimilarity by equation (7).
It can be assumed that the mice tend to make wrong
decisions when the outputs of the Mitral layer are
similar. Accordingly, the output of the model is con-
sidered to correspond with the results of the odor dis-
crimination experiments on mice [7].

4 Simulation

This section describes the simulations performed
based on the algorithm described in the previous sec-
tion.

4.1 The 1st step of the simulation

First, data on 70 odorants were selected from the
365 odorants provided by Johnson et al. [11] as a train-
ing data set. Then, 3 odorants with identical struc-
tures but different carbon numbers were chosen and
added to the set.

Fig. 4 shows the outputs of the model after the
training is completed. In Fig. 4, the molecules in
the uppermost row are the inputted odorants followed
by the actual activity patterns [5], the output of the
model, and the a graph of the mean square errors
(MSEs). The odorants with a gray background are
included in the training set, while those with no back-
ground color are untrained odorants. This figure indi-
cates that the model successfully predicted the activ-
ity patterns in the training data set with an prediction
error MSE of below 0.002. The predicted activity pat-
terns of untrained odorants were also close to the ac-
tual activity patterns with MSEs ranging from about
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Figure 5: Comparison between the results of the be-
havior experiments.

0.007 to 0.015. Consequently, the model is capable
of predicting the tendency for the activated parts of
glomeruli to shift continuously along with the carbon
number [5].

4.2 2nd step of the simulation
In the learning phase, an odor [IA, Ci, EB], repre-

senting an odorant mixture composed of isoamyl ac-
etate, citral, and ethyl butyrate, is input to the pro-
posed model. The connective weights are then ad-
justed according to the learning algorithm described
in Section 3.2.2. The initial values of the connec-
tive weights are determined by uniform random values
ranging between −10−5 and 10−5.

After the learning phase, 6 different odors [IA],
[EB], [Ci], [IA, EB], [IA, Ci], and [Ci, EB] are input
to the model. Then, the output of the neuron in the
Y layer is compared with the correct rates in odor dis-
crimination experiments on the mice. In this step, the
connective weights are fixed on the values determined
in the 1st step of the simulation.

The outputs of the Glomerular layer to each odor
are shown in the bottom row in Fig. 5. The outputs of
the Mitral layer after the 2nd learning phase are shown
in the middle row, and the outputs of the neurons in
the Y layer are plotted at the top. The discrimination
rates obtained from the odor discrimination experi-
ment on the mice are also plotted beside the output
of the Y layer.

Comparing the activity patterns of the Glomerular
layer to those of the Mitral layer shows that the acti-
vated region becomes narrow, but its activity becomes
stronger, which means that most activated regions in

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 408



the Glomerular layer were extracted. Fig. 5 indicates
a similar tendency between the correct rates and the
output of the neuron in the Y layer; the higher the out-
put, the higher the correct rate. From these results,
we can conclude that the model is capable of account
for the perception characteristics of mice to a certain
extent through the assumed Attention mechanism.

5 Conclusion
In this paper, we propose a neural network model

of the olfactory system of mice. Utilizing this model,
we tried to predict the activity pattern in glomeruli
evoked by odorants. The simulation results indicated
that the model was capable of predicting the activity
patterns of untrained odors with different carbon num-
bers, and showed consistency with those of odor dis-
crimination experiments on mice. This ability to pre-
dict perception characteristics makes the model suit-
able as a basis for artificial organoleptic tests.

However, odors in nature are composed of odorants
in different concentrations, which is not accounted for
in the proposed model. Future studies must therefore
include the odor coding manner for different concen-
trations. In addition, since the simulations were per-
formed only with on odorants [IA], [Ci], and [EB] using
limited experimental data, further behavioral experi-
ments and simulation need to be performed on other
odorants to verify the ability of the model.
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