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Abstract: The iterated prisoner’s dilemma (IPD) game has been frequently used to examine the evolution of 
cooperative behavior among agents. When the effect of representation schemes of IPD game strategies was examined, 
the same representation scheme was usually assigned to all agents. That is, a population of homogeneous agents was 
usually used in computational experiments in the literature. In this paper, we focus on a slightly different situation 
where each agent does not necessarily use the same representation scheme. That is, a population can be a mixture of 
heterogeneous agents with different representation schemes. In computational experiments, we use binary strings of 
different length (i.e., three-bit and five-bit strings) for representing IPD game strategies. We examine the evolution of 
cooperative behavior among heterogeneous agents in comparison with the case of homogeneous ones for the standard 
IPD game with the typical payoff values 0, 1, 3 and 5. Experimental results show that the evolution of cooperative 
behavior is slowed down by the use of heterogeneous agents. It is also demonstrated that the faster evolution of 
cooperative behavior is achieved among majority agents than minority ones in a heterogeneous population. 
 
Keywords: Iterated prisoner’s dilemma (IPD) game, evolution of cooperative behavior, evolution of game strategies, 
genetic algorithms, representation, coding schemes. 

 
 

I. INTRODUCTION 

The evolution of cooperative behavior among agents 
in the iterated prisoner’s dilemma (IPD) game has been 
discussed in many studies since the late 1980s [1] and 
the early 1990s [2], [3]. A player’s strategy, which can 
be represented in various manners such as a binary 
string, a real-number string, a finite-state machine and a 
neural network, is evolved by selection, crossover and 
mutation in those studies. The fitness of a player in a 
population is defined by its average payoff obtained in 
iteratively playing the prisoner’s dilemma game against 
other players in the same population. Various techniques 
and concepts have been introduced to the IPD game 
such as the speciation of strategies [4], individual 
recognition [5], and partner selection [6]. The IPD game 
has also been extended to various cases such as a multi-
player version [7], [8], a spatial version [9], [10], 
stochastic strategies [11], [12], and random paring [13], 
[14]. See [15] for various studies on the evolution of 
cooperative behavior among agents in the IPD game. 

Recently the IPD game has been used for examining 
the effect of the choice of a representation scheme on 
the evolution of game strategies [16], [17]. Those 
studies compared various representation schemes such 
as finite-state machines, cellularly encoded finite-state 

machines, feed-forward neural networks, if-skip-action 
lists, parse trees storing two types of Boolean functions, 
lookup tables, Boolean function stacks, and Markov 
chains. Experimental results showed that the choice of a 
representation scheme had a dominant effect on the 
evolution of game strategies. 

When the effect of the choice of a representation 
scheme was examined, the same representation scheme 
was usually assigned to all agents in a population. That 
is, a population of homogeneous agents was usually 
used in computational experiments. In this paper, we 
focus on a slightly different situation where each agent 
does not necessarily use the same representation scheme. 
For example, some agents can use binary strings as their 
game strategies even when all the others use feed-
forward neural networks. That is, a population can be a 
mixture of heterogeneous agents. Our aim is to show the 
effect of mixing different representation schemes.  

 

II. IPD GAME AND GAME STRATEGIES 

In this paper, we examine the evolution of 
cooperative behavior among heterogeneous agents in 
comparison with the case of homogeneous ones through 
computational experiments on the standard IPD game 
with the typical payoff values 0, 1, 3 and 5 (see Table 1). 
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The prisoner’s dilemma game with the payoff matrix in 
Table 1 is played for a prespecified number of rounds 
(100 rounds in our computational experiments) between 
a pair of randomly selected agents from the current 
population. The random choice of two agents and the 
game playing between them are repeated in each 
generation until every agent plays the IPD game against 
a prespecified number of opponents (five opponents in 
our computational experiments). The fitness of each 
agent is defined by the average payoff per round 
obtained in the current population. New strategies for 
the next generation are generated by genetic operations.  

We use three-bit and five-bit binary strings for 
representing IPD game strategies. Examples of those 
binary strings are shown in Table 2 and Table 3. Table 2 
shows a three-bit binary string “101” which represents 
the so-call TFT (Tit-for-Tat) strategy. The same strategy 
is represented by a five-bit binary string in Table 3. One 
of these two representation schemes is assigned to each 
agent in our computational experiments. 

 

Table 1. Payoff matrix of our IPD game. 

Opponent’s Action 
Player’s Action 

C: Cooperate D: Defect 

C: Cooperate 
Player: 3 

Opponent: 3 
Player: 0 

Opponent: 5 

D: Defect 
Player: 5 

Opponent: 0 
Player: 1 

Opponent: 1 

Table 2. A three-bit binary string (TFT) 

Player’s First Action: Cooperate 1 
Opponent’s Action on  
the preceding Round 

Suggested Action  

D: Defect D: Defect 0 
C: Cooperate C: Cooperate 1 

Table 3. A five-bit binary string (TFT) 

Player’s First Action: Cooperate 1 
Actions on the Preceding Round 

Player Opponent 
Suggested 

Action 
 

D: Defect D: Defect D: Defect 0 
C: Cooperate D: Defect D: Defect 0 

D: Defect C: Cooperate C: Cooperate 1 
C: Cooperate C: Cooperate C: Cooperate 1 

 
When we use both representation schemes, the 

current population is a mixture of three-bit and five-bit 

binary strings. The game playing between binary strings 
with different length involves no additional difficulties. 
Thus we assume no restriction on the choice of two 
agents for the game playing. That is, a pair of strings 
(i.e., agents) is randomly selected from the current 
population for the game playing with no restriction.  

On the other hand, we always choose a pair of 
strings of the same length for crossover. That is, we use 
a mating restriction where binary strings of different 
length are never recombined. The current population 
can be viewed as two sub-populations: One with three-
bit binary strings and the other with five-bit binary 
strings. Genetic operations are separately performed in 
each sub-population to generate the next sub-population. 
That is, the current population can be viewed as two 
separate sub-populations in the genetic operation phase 
whereas it is handled as a single population in the IPD 
game playing phase in our computational experiments. 

In each sub-population, a pair of binary strings is 
selected based on the following selection probability: 

∑
Ψ∈

Ψ−
Ψ−

=

j
j

i
i fsfitness

fsfitnesssP
))()((

)()()(
min

min ,  (1) 

where si is the i-th string, fitness(si ) is the average 
payoff of si  obtained by the IPD game in the current 
population, Ψ is a sub-population including si , and 
fmin(Ψ) is the minimum average payoff among strings in 
the sub-population Ψ.  Eq.(1) is a standard roulette 
wheel selection with the linear scaling based on the 
minimum fitness value. It should be noted that the 
selection is separately performed in each sub-population. 

We apply the standard one-point crossover operation 
to the selected pair of strings (with the probability 1.0 in 
our computational experiments). One of the generated 
two strings by the crossover operation is randomly 
chosen as an offspring. The standard bit-flip mutation 
operation is applied to the selected offspring (with the 
probability 0.002 per bit). By iterating the selection, 
crossover and mutation, we generate the same number 
of offspring as the sub-population size. The current sub-
population is entirely replaced with the newly generated 
offspring. Thus the sub-population size is constant 
throughout the evolution of IPD game strategies.  

 

III. COMPUTATIONAL EXPERIMENTS 

We examined the following five situations in our 
computational experiments: 

The Fourteenth International Symposium on Artificial Life and Robotics 2009 (AROB 14th ’09),
B-Con Plaza, Beppu, Oita, Japan, February 5 - 7, 2009

©ISAROB 2009 103



(1) Homogeneous case with 100% three-bit strings, 
(2) Homogeneous case with 100% five-bit strings, 
(3) 25% three-bit strings and 75% five-bit strings, 
(4) 50% three-bit strings and 50% five-bit strings, 
(5) 75% three-bit strings and 25% five-bit strings. 

We used the following conditions in computational 
experiments in this paper: 

[Overall computational experiment setting] 
Number of runs: 1000 for each case. 

[Genetic algorithm setting] 
Population size: 100, 
Initial strings: Randomly generated binary strings, 
Selection: Roulette wheel selection in Eq.(1),  
Crossover probability: 1.0 (One-point), 
Mutation probability: 0.002 per bit (Bit-flip), 
Generation gap: 100% (i.e., no elite individuals), 
Termination condition: 1000 generations. 

[IPD game setting] 
Number of opponents: 5 (Randomly chosen), 
Number of rounds: 100 (between the same agents). 

First we compare the two homogeneous cases with 
each other in Fig. 1 where the average payoff at each 
generation is shown. This figure shows the effect of the 
choice of a representation scheme on the evolution of 
cooperative behavior. In Fig. 1, slightly faster evolution 
of cooperative behavior was achieved by shorter strings 
(i.e., by three-bit than five-bit). Since the representation 
schemes are very similar to each other, we obtained 
similar results in Fig. 1. The choice of a representative 
scheme, however, often has a dominant effect [16], [17]. 
We used these very similar representation schemes in 
order to highlight the effect of mixing them. 
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Fig. 1. Average payoff from homogeneous populations. 
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Fig. 2. Average payoff from inhomogeneous populations 
with 25% three-bit strings and 75% five-bit strings. 
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Fig. 3. Average payoff from inhomogeneous populations 
with 50% three-bit strings and 50% five-bit strings. 
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Fig. 4. Average payoff from inhomogeneous populations 
with 75% three-bit strings and 25% five-bit strings. 

 
Experimental results on the three inhomogeneous 

cases are shown in Figs. 2-4. The average payoff was 
calculated in each sub-population in these figures. From 
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the comparison of Fig. 1 with Figs. 2-4, we can see that 
cooperative behavior was more easily evolved among 
homogeneous agents in Fig. 1 than heterogeneous ones 
in Figs. 2-4. That is, mixing different representation 
schemes in a population slowed down the evolution of 
cooperative behavior. This negative effect was the most 
severe in Fig. 3 where the number of agents with each 
representation scheme was the same. An interesting 
observation is that better results were always obtained 
by majority agents (i.e., five-bit strings in Fig. 2 and 
three-bit strings in Fig. 4) when the number of agents 
with each representation scheme was different. Another 
interesting observation is that much better results were 
obtained in Fig. 4 than Fig. 2 whereas there was no 
large difference in Fig. 1 between the two schemes. 

 

VI. CONCLUSION 

In this paper, we examined the effect of mixing 
different representation schemes on the evolution of 
cooperative behavior in the IPD game. We used very 
similar representation schemes: three-bit and five-bit 
binary strings. We obtained similar results from these 
two representation schemes when they were separately 
used in homogeneous populations. Their simultaneous 
use in a single population, however, clearly slowed 
down the evolution of cooperative behavior. This 
negative effect of mixing different representation 
schemes affected the minority agents more severely. 
The worst results (i.e., the most severe negative effect) 
were obtained when the number of agents with each 
representation scheme was the same. As future research, 
we are planning to further examine the effect of mixing 
different representation schemes on the evolution of 
cooperative behavior in various situations such as using 
more than two types of agents and/or totally different 
representation schemes. We will also discuss potential 
positive effects of mixing different representation 
schemes on the evolution of IPD game strategies. 
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