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Abstract: Recently, Inter-Vehicle Communication (IVC) has actively been studied to avoid traffic congestion. In this 
paper, we propose an idea of using fuzzy rules to examine the effectiveness of IVC. In the proposed approach, we first 
collect travel records (e.g., travel time, travel path, traffic volume) of vehicles with IVC from our cellular automata-
based traffic simulator. Various kinds of available information for vehicles with IVC are used in the antecedent part of 
our fuzzy rules. The level of the effectiveness of IVC is discretized into four categories (i.e., four classes) in this paper. 
The consequent class of each fuzzy rule is one of those four classes. Next we generate a large number of fuzzy rules 
from the collected data. Then we select only a small number of fuzzy rules by multiobjective genetic rule selection. We 
use three objectives: to maximize the accuracy, to minimize the number of selected rules, and to minimize the total rule 
length (i.e., the total number of antecedent conditions). Our approach can find a number of non-dominated fuzzy rule-
based systems with respect to their accuracy and complexity. Finally we analyze the effectiveness of IVC using fuzzy 
rules in the obtained fuzzy rule-based systems through their linguistic interpretation.  
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I. INTRODUCTION 

Vehicles are widely used as a means of useful trans-
portation in the mobility society where the demand for 
road traffic is expanding year by year. At the same time, 
chronic traffic congestion has become a social problem. 
To solve this problem, several studies [2], [3] have 
pointed out and discussed the potential ability of direct 
wireless communication between vehicles, usually re-
ferred to as Inter-Vehicle Communication (IVC). IVC 
has several advantages: no need of huge public infra-
structure investment and little time lag on transmitting 
traffic information. This is because vehicles can directly 
communicate traffic information to each other.  

In this paper, we propose an idea of examining the 
effectiveness of IVC using fuzzy rules generated from 
traffic simulations. During our simulations, we collect 
time-series data from each vehicle such as the traffic 
volume and the route of each vehicle. We use fuzzy 
rules selected by multiobjective genetic rule selection to 
examine the effectiveness of IVC. A large number of 
fuzzy rules are generated from the collected data from 
vehicles. Only a small number of fuzzy rule are selected 
by multiobjective genetic rule selection. A number of 
non-dominated fuzzy systems can be obtained with re-
spect to their accuracy and complexity. Using the se-
lected fuzzy rules, we can manually analyze how each 

vehicle can predict the travel time for each route based 
on the available information through IVC. 

This paper is organized as followed. First we explain 
our traffic simulator in Section II. Next we explain a 
route guidance method based on the traffic information 
sharing among neighboring vehicles through IVC in 
Section III. Then we explain multiobjective genetic rule 
selection in Section IV. In Section V, we examine the 
effect of IVC through computational experiments on our 
traffic simulator. Experimental results show that the 
selected fuzzy if-then rules can explain how each vehi-
cle chooses a route using the available information 
through IVC. Finally Section VI concludes this paper.  

 

II. TRAFFIC SIMULATOR 

In this section, we explain our traffic simulator. This 
model is used in Section IV to examine the effect of 
IVC through computational experiments.  

Traffic simulators can be divided into macroscopic 
and microscopic models. In this paper, we develop a 
microscopic traffic simulator using cellular automata [6]. 
Figure 1 shows the road map of our traffic simulator. 
The simulation area is divided into squared cells. In our 
simulator, we assume that the road map is treated as a 
directed graph where a node and a link correspond to an 
intersection and a road between intersections, respec-
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tively. A link is represented by a sequence of gray cells 
in Fig. 1. The origin and the destination of a driver are 
assigned randomly to any cell on any link in Fig. 1. 
When a driver arrives at its destination, a new destina-
tion is assigned randomly.  

 

  
Fig. 1. Road map of our traffic model. 

 
The positions of all vehicles running in the simulator 

are updated synchronously. At every state transition 
time, each vehicle stays at the current cell or jumps to 
its next cell according to a local transition rule. Our 
local transition rule is simply stated as “a vehicle moves 
only when its next cell towards its destination is empty”. 

 

III. INTER-VEHICLE COMMUNICATION 

In this section, we explain a route selection method 
based on available information for vehicles through IVC. 
Our method chooses a route for a driver from its origin 
to its destination based on available information, and 
revises the selected route whenever the driver ap-
proaches an intersection. In this paper, we represent the 
traffic information for each link by a link weight. For 
example, if a link weight is large, a vehicle on the link 
needs long travel time to pass the link. We employ 
Dijkstra’s algorithm [1] to search for the route with the 
minimal sum of link weights (i.e., the fastest route). 

Each driver has its own weight for each link. The ac-
tual travel time of the driver is assigned as the weight to 
the corresponding link. There are two cases where the 
weight of a link is updated. One is when the driver trav-
els the link. When the driver arrives at a node (i.e., in-
tersection), the weight of the corresponding link is up-
dated to the actual travel time. The update time for the 
link weight is set as well. The other is the case in which 
another vehicle is in the range of IVC. Each vehicle 
compares the update times for all weights with those of 

another vehicle. Figure 2 shows an example in which a 
vehicle A passes on another vehicle B on the opposite 
lane. They can communicate with each other through 
IVC. Traffic information to be shared by these two ve-
hicles consists of the travel time (i.e., weight) and the 
update time for each link. It should be noted that each 
vehicle has its own travel time and update time for each 
link. More specifically, the newer information for each 
link is shared by these two vehicles by updating the 
older one for each link. Closely adjacent vehicles in the 
same lane also communicate directly with each other in 
the same manner as in the above-mentioned situation. 
 

A

B

B
A

# of link Travel time Update time
1 7 7
2 5 12
3 8 20
4 3 23

# of link Travel time Update time
1 5 25
2 6 20
3 9 14
4 5 5

# of link Travel time Update time
1 5 25
2 6 20
3 8 20
4 3 23

# of link Travel time Update time
1 5 25
2 6 20
3 8 20
4 3 23

  
Fig. 2. An example of inter-vehicle communication. 

 

IV. MULTIOBJECTIVE RULE SELECTION 

In this section, we briefly explain fuzzy rules, fuzzy 
reasoning, and multiobjective genetic rule selection. 

1. Pattern Classification Problem 
Let us assume that we have m training (i.e., labeled) 

patterns xp = (xp1, ..., xpn), p = 1, 2, ..., m from M classes 
in the n-dimensional continuous pattern space where xpi 
is the attribute value of the p-th training pattern for the 
i-th attribute (i = 1, 2, ..., n). For the simplicity of expla-
nation, we assume that all the attribute values have al-
ready been normalized into real numbers in the unit 
interval [0, 1]. That is, ]1,0[∈pix  for =p 1, 2, ..., m 
and =i 1, 2, ..., n. 

2. Fuzzy Rules for Pattern Classification 
We use fuzzy rules of the following type for our n-

dimensional problem: 

Rule qR : If 1x  is 1qA  and ... and nx  is qnA     
then Class qC  with qCF ,     (1) 

where qR  is the label of the q-th fuzzy rule, 
)...,,( 1 nxx=x  is an n-dimensional pattern vector, 

qiA  is an antecedent fuzzy set ( =i 1, n...,,2 ), qC  
is a class label, and qCF  is a certainty grade. 
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We use multiple fuzzy partitions with different 
granularities in rule extraction. In this paper, we use 
four homogeneous fuzzy partitions with triangular fuzzy 
sets in Fig. 3. In addition to the 14 fuzzy sets in Fig. 3, 
we also use the domain interval [0, 1] as an antecedent 
fuzzy set in order to represent a don’t care condition. 
That is, we use the 15 antecedent fuzzy sets for each 
attribute in our computational experiments. Thus the 
total number of possible fuzzy rules is 15n.  

For each of those 15n combinations of the antece-
dent fuzzy sets, the consequent class and the certainty 
grade can be easily specified based on compatible train-
ing patterns [4]. Using a fuzzy rule evaluation measure 
in fuzzy data mining [4], we generate a prespecified 
number of fuzzy rules. 
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Fig. 3. Four fuzzy partitions used in our experiments. 

 

3. Multiobjective Genetic Rule Selection 
Let us assume that N candidate rules have already 

been extracted. Multiobjective genetic rule selection 
tries to find an accurate and compact rule set from the N 
candidate rules. Any subset S of the N candidate rules 
can be represented by a binary string of length N as 

NssssS ⋅⋅⋅= 321  where si = 1 and si = 0 mean that the 
i-th candidate rule is included in and excluded from the 
rule set S, respectively. Such a binary string is used as 
an individual in multiobjective genetic rule selection. 

We use an evolutionary multiobjective optimization 
(EMO) algorithm to search for non-dominated fuzzy 
rule sets with respect to the three objectives: to maxi-
mize the number of correctly classified training patterns 
by S, to minimize the number of fuzzy rules in S, and to 
minimize the total rule length of S.  

Since each individual is represented by a binary 
string, we can use any EMO algorithm with standard 
genetic operations. In our computational experiments, 
we used NSGA-II together with uniform crossover and 
bit-flip mutation. The execution of NSGA-II was termi-

nated at the prespecified number of generations. See [5] 
for details on multiobjective genetic rule selection. 

 

V. COMPUTATIONAL EXPERIMENTS 

1. Data Preparation 
In this subsection, we explain how to prepare train-

ing data with class labels from the travel records in our 
traffic simulator. There exist 300 vehicles in our simula-
tion environment in Fig. 1. The termination condition of 
traffic simulations was that each vehicle reached the 
goals at least 50 times. Each vehicle can communicate 
with another vehicle in the eight neighborhood cells. 

Let us assume that a vehicle travels from node A to 
B and then chooses a route from node B to C in Fig. 4. 
In this case, a training pattern x = (x1, …, x10) is col-
lected at the node B. In the following, each element of 
this training pattern is explained in detail. 

 

A B C

E

D

  
Fig. 4. An example of link connection density. 
 
The first three elements x1, x2, and x3 are link con-

nection density of node A, B, and C, respectively. Link 
connection density is a sum of the number of links that 
the neighbor nodes have. For example, x2 is link connec-
tion density of node B, which is a sum of the number of 
links that the neighboring nodes (i.e., A, C, D, and E) 
have. That is, x2 is 13 (i.e., 4+3+3+3). When the link 
connection density of a node is high, the node can be 
viewed as a hub of the neighboring nodes. That is, a 
large number of vehicles must be likely to pass the node. 

The fourth element x4 is the traffic volume in the 
current lane (i.e., A to B), x5 is the traffic volume in the 
current opposite lane (i.e., B to A), x6 is the traffic vol-
ume in the next lane (i.e., B to C), and x7 is the traffic 
volume in the next opposite lane (i.e., C to B). A large 
traffic volume of a link means heavy traffic where each 
vehicle can communicate with each other very often. It 
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also suggests possible traffic congestion. 
The other elements x8, x9, x10 are the number of links 

of nodes A, B, and C, respectively. They are related to 
the traffic volume and the frequency of communication. 

Next we explain how to define the class label of 
each training pattern, which shows the effectiveness of 
IVC. We focus on the freshness of traffic information 
held by each vehicle and the accuracy of the predicted 
travel time from available information. We use the fol-
lowing four class labels:  
Class 1: The update time of the weight of the chosen 

link held by a vehicle is old, and the vehicle 
could not correctly predict the travel time of 
the chosen link. 

Class 2: The update time is old, but the vehicle could 
correctly predict the travel time. 

Class 3: The update time is new, but the vehicle could 
not correctly predict the travel time. 

Class 4: The update time is new, and the vehicle could 
correctly predict the travel time. 

2. Experimental Results 
First we generated 250 fuzzy rules for each class 

from the collected training patterns. Those fuzzy rules 
were used as candidate rule in multiobjective genetic 
rule selection where NSGA-II with the population size 
200 was executed fro 5000 generations. 

We obtained a number of fuzzy systems with differ-
ent accuracy-complexity tradeoffs from a single run of 
NSGA-II. In order to manually analyze the effectiveness 
of IVC, we chose a very simple fuzzy system with only 
a single rule per class in Fig. 5 where DC means don’t 
care and the real number in the parentheses shows the 
certainty grade of each fuzzy rule. The selected fuzzy 
rules in Fig. 5 are linguistically interpreted as follows:  

R1: If a vehicle came from a node with high link con-
nection density and the traffic volume in the current 
link is moderate, it cannot obtain new traffic infor-
mation and cannot predict the travel time. 

R2: If a vehicle is about to go to a node with moderate 
link connection density and the traffic volume in the 
current link is very large, it can obtain new traffic 
information but cannot predict the travel time. 

R3: If a vehicle is on a link with a very light traffic, the 
vehicle cannot obtain new traffic information but 
can predict the travel time correctly. 

R4: If a vehicle came from a node with small link con-
nection density and is on a link with a somewhat 
heavy traffic, it can use new traffic information and 

can predict the travel time correctly. 

From these fuzzy rules, we can see that there exist 
situations where vehicles cannot obtain new traffic in-
formation by IVC. We can also see that there are some 
cases in which vehicles cannot predict their travel times 
even when they have new information.  

 

DC

x1

R1

R2

R3

R4

x3 x4

DC
DC Class 3

(0.69)

Class 4
(0.25)

Consequent
Class 1
(0.12)

Class 2
(0.31)

DC
DC

  
Fig. 5. One example of extracted knowledge. 
 

VI. CONCLUSION 

We proposed an idea of using fuzzy rules to examine 
the effectiveness of Inter-Vehicle Communication (IVC). 
Through computational experiments, we demonstrated 
that we can obtain linguistic descriptions from fuzzy 
rules about the characteristic features of IVC with re-
spect to the availability of new traffic information and 
the accuracy of predicted travel times for vehicles. 

This work was partially supported by the Grant-in-
Aid for Exploratory Research: KAKENHI (18650055). 
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