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Abstract
As a first step to understand nonequilibrium dy-

namics of reacting network system, we propose a
model of reacting network system in which reaction
rates are determined by a simple dynamics of energy
flow.

1 Introduction

A great variety of plants and animals have been
living on earth, and we are living and evolving by ab-
sorbing energy from the sun, and at the same time
dissipating them. By the development of molecular
biology in 20th century, its activities are found to be
supported by complex reaction networks. However,
temporal understandings of nonequilibrium reacting
networks are far behind for understanding the life.

Phenomenological studies based on differential
equations have been mainly done so far, however, we
do not have enough understandins why the system
choose to let parameters in the equations have the val-
ues. Next step will be to include additional variables
to understand how the value of parameters are de-
termined, and most appropriate one would be energy
which flows though the system in various forms such as
substances, ATP, light, and so on. Recently, we pro-
pose a simple model in which energy flow is included
and reaction proceed depending on the variable[1].

In this paper, we applied the model in which reac-
tion paths form random networks.

2 Model

2.1 Reactions

We consider s chemicals Xi (i = 1, ..., s) are inside
the system. The following reactions will occur in the
system,

Xi + Xj → 2Xi + Xj , (1)

which means that new Xi will be produced by catal-
ysis of Xj . We construct random network of catalytic
relations. For every chemical, density of path of re-
actions is fixed to ρ, so that every chemical has sρ
catalyst on average.

2.2 Dynamics of energy flow

We assume a homogeneous system and that fre-
quency of reactions are proportional to the multiplier
of concentrations of reactants cicj where ci denote the
number of Xi divided by total number of molecules
NT . Therefore, the increase of Xi can be written as

∆Ni = γi
Ni

NT

Nj

NT
. (2)

where γi denote rate constant for Xi. We do not give
values of γi as parameters. Instead, following dynam-
ics are introduced in the system. We introduce a new
quantity J which represents resources to produce new
molecules such as substances, light, ATP and so on.
We refer to J as energy in this paper, and we also as-
sume J is a single quantity for whole of the system.
W assume that J is flowing into the system so that J
increase constantly by ∆J whether reactions occur or
not. We determine E for every reaction that is necce-
sary amount of J to proceed the reaction. We progress
the reaction if the amount of J is greater than E in the
system. These dynamics determine the rate constant.

The simulations are carried out as follows. We in-
troduce discrete simulation steps. In every step, we
pick up two molecules randomly from the system. If
there is a reaction path between the two molecules,
reaction may occur. If not, we just put them back to
the system. When there is a reaction path between the
two, and at the same time, if J is greater than E for
the reaction, we add new particle as eq.(1). As a cell
division, if the total number of molecules NT exceed
a threschold Nmax, we randomly remove half of them
from the system. We also add ∆J to J in every step
whether reactions occur or not.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 585



3 Results

3.1 In case of two species[1]

First of all, we consider two species case s = 2,

X1 + X2 → 2X1 + X2, (3)
X2 + X1 → 2X2 + X1. (4)

We denote the necessary amount of J for these re-
actions as E1 and E2, respectively. In case of E1 =
E2 = E, we can calculate the rate constant γ in a
steady state as γ = 4∆J/E. However, in asymmetric
case E2 > E1, interesting behavior is observed in a
steady state. Rate constant for X2 shows not only the
Arrhenius type γ2 ∼ exp(−E2/α∆J2) but also non-
trivial power-law dependence on E2 as ∆J is fixed to
be greater value. Further, we also observe crossover
behavior that the power changes from −1/2 to −1 at
some large value of E2. Details of results and analysis
are in Ref.[1].

3.2 Random network case

We simulate a random network case. We construct
the random reaction paths and we also determine the
value of E for every reaction randomly between 0 and
Emax. It is noted that in the case, mutually catalytic
reaction paths are eliminated. We fix parameters as
Nmax = 16000, ρ = 0.1, Emax = 30 and ∆J = 1.
Further, initial number of chemical species s is chosen
as s = 200.

3.2.1 Steady states and fluctuations

The system attains a steady state in which several
chemicals are survived as shown in Fig. 1

It is noteworthy that the survived chemicals can be
different for every simulation even if the parameters
are the same. This implies that a condition whether
some chemicals can be survived depends on genera-
tions of random numbers. We will not discuss which
chemicals or networks can survive, but examine the
properties of the survived networks.

In the reaction network, every chemical is catalyzed
by other chemicals in the network and the chemi-
cal also catalyze other chemicals. Thus, the survived
chemicals form a cycle like shown in Fig. 2.

As a general feature of replicating system with
catalytic networks, it is known that fluctuations
of the number of chemicals which are peripheral
to but catalyzed by the core cycle are log-normal
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Figure 1: Number of each chemicals in the system.
Several chemicals survived and they continues to re-
produce theirself.

Figure 2: The survived reaction network in our sim-
ulation. The number denotes a chemical and arrow
from chemical Xi to Xj denotes that Xi catalyzes Xj .
The reaction energies of the surviving chemicals are
E6 = 11.45, E7 = 6.31, E119 = 7.37, E152 = 2.65 and
E166 = 0.18.
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distributions[2]. The log-normal distribution is rep-
resented by a normal distribution of log(Ni) as

P (Ni) ≈ exp

(
− (log(Ni)− µ)2

2σ2

)
,

where µ and σ denote the mean and the standard de-
viation, respectively. The log-normal distributions of
the number of chemicals are found experimentally in
some cellular reactions[3]. In this model, the fluctu-
ations of the components of the core cycle 6, 7, 152
are small, but fluctuations of the chemicals which are
peripheral to but catalyzed by the core cycle, 119 and
166 shows log-normal distributions[4].

3.2.2 Dynamics of energy resources

We examine the microscopic dynamics of J in the surv-
ing cycle. We represent the distributions of J as PJ .
We also represent qi as

qi =

(∑

k

Nk

Nt

)
Ni

Nt
,

where k is summed up through chemicals which the
chemical Xi catalyze. Thus, the master equation of
PJ is written as follows,

PJ(t+1) = PJ−∆J(t)

(
1−

∑

i

qi

)
+

∑

i

PJ+Ẽi−∆J(t)qi,

(5)
where t denotes the simulation step, and Ẽi is written
as

Ẽi =
{

Ei (J ≥ Ei)
0 (J < Ei).

We obtain the steady state solution PJ by a condi-
tion PJ(t + 1) = PJ(t) numerically. For simplicity, we
assume that values of J are multiples of ∆J . First, we
assume that

PJ = k × PJ−∆J ,

for J > Emax where k satisfies the following equation,

k =

(
1−

∑

i

qi

)
+

∑

i

qik
Ei/∆J . (6)

Based on the master eq. (5) and the values of PJ

for J > Emax, we obtain PJ for J < Emax. Figure 3
shows the distributions of J obtained from the original
model and the master eq. (5). It is confirmed that the
value of the original model agrees with that of the
random walk analysis.
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Figure 3: Distribution of J represented as PJ in the
steady state. The points represented as “simulations”
show the results of the original simulations, and the
dotted line as “analysis” show that of the random walk
analysis with k = 0.813.

Consequently, we can derive the rate constants γi

for chemical Xi as

γi =
∑

J>Ei

PJ . (7)

3.2.3 Rate of Replicating “Heavy” Chemicals

In the previous subsection, we have shown that the
random walk analysis explained the distribution of J
and the rate constant of the survived chemicals.

As noted in the previous subsection, the survived
chemicals comprises the self-sustaining cycles. In this
subsection, we examine how the rate constant de-
pends on the reaction energy in case that the system
should possess a “heavy” chemical which means that
the chemical needs a very large energy E to reproduce.
In our model, the “heavy” chemical cannot survive by
itself in general because there is usually an alternative
cycle in which chemicals reproduce themselves more
easily.

However, it is possible that the chemical plays an
essential role in the system such as DNA even if the
chemical is difficult to obtain. Therefore, we consider
the case that the system should possess the “heavy”
chemical. It is obvious that chemicals should com-
prise the self-sustaining hypercycle for its survival. As
a simplest case in our model, the cycle is composed
by three chemicals, say A,B, and C. We refer to the
“heavy” chemical as A. B is a chemical which is cat-
alyzed by A. Finally, C is a chemical which is cat-
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Figure 4: Rate constant vs. reaction energy E of the
“heavy” chemical. The line E−1/2 is also drawn.

alyzed by B and it also catalyzes A.
It is obvious that the cycle is advantageous for its

survival when the values of energy E to obtain the
chemicals B and C are small. Thus we assume that
the values of E to obtain B and C are small compared
to that of A.

We simulate the system and show the dependence
of rate of replicating A on the reaction energy in Fig.
4. It is clear that the rate constant have power-law
dependence with regard to the reaction energy and
the power is -1/2.

This behavior is explained by the macroscopic rela-
tions of the system. In the steady state, the following
relations hold in the system: the conservation of en-
ergy in each step,

∆J = EA∆NA + EB∆NB + EC∆NC , (8)

the condition of steady state about the number

Ni + ∆Ni

Nt + ∆Nt
=

Ni

Nt
, (9)

where ∆ indicates the expecting increase of each num-
ber in one step, the index i represents every chemi-
cal A,B, and C, and Nt denotes the total number of
molecules. Furthermore, ∆Ni is written as

∆Ni =
Ni

Nt

N(i)

Nt
γi, (10)

where (i) indicates a chemical which catalyzes chemi-
cal i, and γi is the rate constant.

When we assume that γB and γC is fixed to one,
we obtain from eqs. (8) to (10)

(∆J−EB)γ3
A+(5∆J−2EA−EB)γ2

A+(8∆J−2EC)γA+4∆J = 0.
(11)

If we remind ourselves that the value of EA is large
compared with the other parameters and only the sec-
ond term of left-hand-side of the equation includes the
EA, we roughly observe that

EAγ2
A ≈ 1. (12)

Therefore, the rate constant have a power-law depen-
dence E

−1/2
A .

4 Summary

We have studied a reacting model of catalytic net-
work. By introducing energy flux which is acquired
from the outside, the rate is determined by the model
itself. We study the dependence of rate constant
on reaction energy, and the behavior is explained by
the asymmetric random walk model. We have found
the same dependences in a situation that the system
should possess a “heavy” chemical as observed in mu-
tually catalytic system.
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