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Abstract: Probabilistic generative models work in many applications of image analysis and speech recognition. In general,
there is an observation vector~y and a state vector~x, and a joint dependency structure among them. The object of interest is,
given~y, the most likely configuration~xMAP and its posterior distribution. In practice, the exact value of posterior probability of
~xMAP is impossible to obtain, especially when there is a large number of observed variables. Here we analyzed the distribution
of posterior probabilities of~xMAP when there areN = 200∼ 1000observations. We used a probabilistic model with simple
linear dependency structure in which the exact value of posterior probability of~xMAP is obtainable. Computer experiments
show that even an identical model generate a variety of posterior distributions, which suggest difficulties in understanding the
meaning of posterior probability. Finally, we propose a method to know the confidence of the estimator~xMAP by computing
P(~x′|~y)’s where~x′’s are neighbors of~xMAP.
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1 Introduction

In Bayesian formations, we formalize the relevant prior
information, as a probability distribution, sayP(~x). Then,
given a prior distributionP(~x) and an “observation”~y, we
form the posterior distributionP(~x|~y): the conditional dis-
tribution given what is observed. Given an observation we
seek the most likely configuration~xMAP that maximizes the
posterior distribution.

Suppose we can computeP(~x|~y), the posterior proba-
bility of ~xMAP, although it is in practice difficult to com-
pute the exact value of posterior probability when there is
a large number of observed variables. What doesP(~x|~y)
signal to us? Even if we know the posterior probability of
~xMAP, its meaning is problem-dependent. When, for exam-
ple, P(~xMAP|~y) = 0.01, can we say~xMAP is not so believ-
able? The answer depend on the problem. Even if we fix
the problem setting, it is difficult to answer. It seems that
larger the configuration space of~x, smaller theP(~xMAP|~y).
However, the value of posterior probability, of course, sig-
nals something. When, for example, the posterior probabil-
ity of ~xMAP is 0.98, it signals that~xMAP is most likely inter-
pretation with high confidence. In general, how can we use
the value of posterior probability effectively for processing
in next stage ?

In this paper, we used a probabilistic model with sim-
ple linear dependency structure in which the exact value of
posterior probability of the most likely configuration~xMAP

is obtainable. We, then, analyzed the distribution of poste-
rior probabilities when there aren = 200∼ 1000observa-
tions. We performed a large number of computer experi-
ments to obtain the distribution ofP(~xMAP|~y). The results
suggest that there is a variety of distributions ofP(~xMAP|~y).
We computed not onlyP(~xMAP|~y) but P(~x′MAP|~y)’s where
~x′ is neighbor of~xMAP. The presentation will be nontechni-
cal and by example, highlighting the meaning of posterior
probability, such as, what posterior probability signals or
whether low posterior probability signals that the estimator
is relatively not believable.

2 Bayesian Inference

2.1 Linear dependency graph

As a simple example, suppose thatX1,X2, . . . is a first-
order Markov process with state spaceX ∈ {0,1}, initial
probability distribution

p0 ≡ Prob(X1 = 0) = 0.5 (1)

p1 ≡ Prob(X1 = 1) = 0.5 (2)

and transition probability matrixP≡
·

p00 p10

p01 p11

¸
≡

·
Pr(Xi+1 = 0|Xi = 0) Pr(Xi+1 = 0|Xi = 1)
Pr(Xi+1 = 1|Xi = 0) Pr(Xi+1 = 1|Xi = 1)

¸
=

·
0.99 0.03
0.01 0.97

¸
.
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Figure 1:a, Linear dependency graph. The nodes of theX-
graph represent a source sequence of 0 and 1’s generated
from a Markov chain, and theY nodes represent a noisy
observation.b, A source data~x (represented as a line), an
observation~y (points), and the maximum a posteriori esti-
mator~xMAP (plotted~xMAP + 3) and its posterior probabil-
ity. Yi = Xi +Zi , Zi ∼N (0,σ2),σ = 0.7, 15 i 5 n= 500.
There was 17/500 discrepancies between~xMAP and~xtrue.

Suppose we observe corrupted signalY1,Y2, . . .Yn where

Yi = Xi +ηi (3)

with ηi iid N (0,σ2),σ = 0.7;

Prob(Yi < yi |xi) =
1√
2πσ

∫ yi

−∞
exp

{
− (y−xi)2

2σ2

}
dy (4)

The goal is to estimateX where the estimation will be
based upon the corrupted observations, and based upon the
model, i.e., the prior distribution.

Y itself is not Markov. Nevertheless, the conditional dis-
tribution of X givenY remain simple, whereX givenY is
still first-order Markov. In general, the combination of a
rich marginal structure forY and a simple posterior struc-
ture forX makes hidden Markov process a common mod-
eling tool [1].

2.2 Most likely configurations

Given an observation~y = (y1, · · · ,yn)T we seek~x =
(x1, · · · ,xn)T that maximizes the posterior distribution (the
so called MAP estimator);

~xMAP = argmax
~x

Prob(~x|~y) (5)

where

Prob(~x |~y) =
Prob(~x, ~y)
Prob(~y)

. (6)

SinceProb(~y) is a positive constant, the goal is to compute

~xMAP = argmax
~x

Prob(~x, ~y). (7)

There are legendary practical problems with the actual im-
plementation of Bayesian methods. We want to compute
most likely states with respect to these posterior distribu-
tions, but usually direct evaluation is already impossible
with one hundred dimensions. Fortunately, for random
fields with linear graph, this posterior distribution is itself
Markov, which has some striking computational implica-
tions.

~xMAP = argmax
~x

{
logpx1 +

n

∑
t=2

logpxt−1xt +
n

∑
t=1

logqxtyt

}
(8)

In particular, dynamic programming methods can be used:
computationally-feasible algorithms exist for estimating
the most likely interpretation~x of a given signal~y. In con-
crete, first we compute

C1(i) = log(pi)+ log(qiy1) (9)

Then, we sequentially compute fort = 1, · · · ,n−1

St+1( j) = argmax
i

{
Ct(i)+ logpi j + logq jyt+1

}
(10)

Ct+1( j) = Ct(St+1( j))+ logpSt+1( j) j + logq jyt+1(11)

wherei, j ∈ {0,1}, and

qxtyt =
1√
2πσ

exp

{
− (yt −xt)2

2σ2

}
∆y (12)

Finally, we obtain

x̂n = argmax
i

Cn(i) (13)

Then thex̂t , t = n−1, · · · ,1 will be obtained.

x̂t = St+1(x̂t+1) (14)
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2.3 Posterior probability

We want to compute the conditional probability of the
most likely state, given the observation

Prob(~x |~y) =
Prob(~x, ~y)
Prob(~y)

. (15)

Still it is difficult to know the posterior probability when
there is a large numbern of observed variables. If we com-
pute the inverse of the conditional probability, rather than
conditional probability itself, we can obtain the posterior
probability for relatively largen [2].

1
p(~x|~y)

=
p(~y)

p(~x,~y)
=

∑̃
x

p(x̃,~y)

p(~x,~y)
(16)

=
∑

i1,i2,i3,··· ,in
pi1,i2 pi2,i3qi1,y1qi2,y2qi3,y3 · · ·qin,yn

px1,x2 px2,x3qx1,y1qx2,y2qx3,y3 · · ·qxn,yn

=
∑
in

qin,yn

qxn,yn

· · ·
∑
i3

pi3,i4qi3,y3

px3,x4qx3,y3

∑
i2

pi2,i3qi2,y2

px2,x3qx2,y2

∑
i1

pi1,i2qi1,y1

px1,x2qx1,y1

=
∑
in

qin,yn

qxn,yn

· · ·
∑
i3

pi3,i4qi3,y3

px3,x4qx3,y3

∑
i2

pi2,i3qi2,y2r2(i2)

px2,x3qx2,y2

=
∑
in

qin,yn

qxn,yn

· · ·
∑
i3

pi3,i4qi3,y3r3(i3)

px3,x4qx3,y3

=
∑
in

qin,ynrn(in)

qxn,yn

where we put

r2(i2) =
∑
i1

pi1,i2qi1,y1

px1,x2qx1,y1

and fort = 3, · · · ,n

rt(it) =
∑
it−1

pit−1,it qit−1,yt−1rt−1(it−1)

pxt−1,xt qxt−1,yt−1

.

3 Computer Experiments

3.1 Posterior probability of MAP estimator

Computer simulation was carried out forn= 200. Typi-
cal sequences of source signal~xTRUE and observation~y and

its MAP estimator~xMAP are illustrated in Fig.2 (left). Pos-
terior probability of the most likely stateP(~xMAP|~y) and
that of true stateP(~xTRUE|~y) (~xTRUE is unknown to ob-
server) is shown on the upper-right corner for typical four
cases.P(~xMAP|~y) seems to be distributed broadly, and they
were 0.113, 0.164, 0.019, and 0.466 in these four cases.
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Figure 2: Posterior probability distribution of~xMAP for typ-
ical four cases of~xTRUE. Left: See Fig.1 for explanation.
Middle: Distribution ofP(~xMAP|~y) for 10,000 different~y’s
generated from an identical~xTRUE. Right: Relationship be-
tween posterior probabilityP(~xMAP|~y) and reconstruction
rated(~xMAP,~xTRUE)/n.

3.2 Distribution of posterior probability of ~xMAP

We generated a set of 10,000 different observation~y’s
from an identical signal~xTRUE. Figure 2 (middle) show
the distribution ofP(~xMAP|~y) for these 10,000~y’s. The re-
sult shows that there are variety type of the distribution of
P(~xMAP|~y). We asked whether these posterior probabilities
signal to us in this problem setting by examining the rela-
tionship between reconstruction rate and posterior proba-
bility. The results are shown in Fig.2(right). As a recon-
struction rate, we used the normalized Hamming distance

dham(~xMAP,~xTRUE)
n

wheren(= 200) is number of observations. These results
show a tendency that higher theP(~xMAP|~y), larger the re-
construction rate, although it is not so simply interpreted.
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Figure 3: Posterior probability distribution of~xMAP. Left:
Distribution of P(~xMAP|~y) for 10,000 different~y’s gener-
ated from 10,000 different samples of~xtrue. Right: Rela-
tionship between posterior probabilityP(~xMAP|~y) and re-
construction ratedham(~xMAP,~xTRUE)/n.

Figure 3 shows the distribution ofP(~xMAP|~y) for 10,000
totally different sample~xTRUE’s and different sample ob-
servation~y’s. The value ofP(~xMAP|~y) decrease asn being
large (compare Fig.3 (left) to Fig.4 which is the case of
n = 500).
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Figure 4: Reconstruction ratedham(~xMAP,~xTRUE)/n and
posterior probabilityP(~xMAP|~y) for n = 500.

4 Discussion

The value of posterior probability of~xMAP does not tell
us much except in the case ofP(~xMAP|~y) being extremely
large since we do not know in advance the structure of pos-
terior probability distribution. To useP(~xMAP|~y) effectively
in interpretation, we consider the distribution of posterior
probability of perturbed~xMAP in which we generate a set
of ~x’s which is close to~xMAP as a vector, and make a his-
togram ofP(~x|~y). For example there are 5 transition points
(0→ 1 or 1→ 0) in ~xTRUE exemplified in Fig.5. We gen-
erated a set of35 = 243~x’s in each of which each tran-
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Figure 5: Meaning of posterior probability of~xMAP. Upper:
P(~xMAP|~y) = 0.03. See the caption of Fig.1 for explanation
in detail. Lower: Distribution ofP(~x′|~y) where 242~x′ sim-
ilar to~xMAP was generated.

sition point of~xTRUE was systematically shifted -1,0,or 1.
We computedP(~x|~y) for each thus generated~x (see Fig.5).
From this analysis, we see the value ofP(~xMAP|~y) = 0.003
has something to tell us;~xMAP is most likely interpretation
given the observation~y with high confidence.
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