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Abstract
In 1997, C.R.Dyer and A.Rosenfeld introduced

an acceptor on a two-dimensional pattern (or tape),
called the pyramid cellular acceptor, and demonstrated
that many useful recognition tasks are executed by
pyramid cellular acceptors in time proportional to the
logarithm of the diameter of the input. They also in-
troduced a bottom-up pyramid cellular acceptor which
is a restricted version of the pyramid cellular acceptor,
and proposed some interesting open problems about
bottom-up pyramid cellular acceptors. On the other
hand, we think that the study of three-dimensional
automata has been meaningful as the computational
model of three-dimensional infomation processing such
as computer vision, robotics, and so forth. In this pa-
per,we investigate about bottom-up pyramid cellular
accptors with three-dimensional layers, and show their
some accepting powers.

Key Words : cellular automaton, diameter, finite au-
tomaton, pattern recognition, three-dimension.

1 Introduction

M.Blum and C.Hewitt first proposed two-
dimensional automata as a computational model
of two-dimensional pattern processing, and investi-
gated their pattern recognition abilities [1]. Since
then, many researchers in this field have been
investigating a lot of properties about automata
on a two-dimensional tape. In [2], C.R.Dyer and
A.Rosenfeld introduced an acceptor on a two-
dimensional pattern (or tape), called the pyramid
cellular acceptor, and demonstrated that many useful
recognition tasks are executed by the pyramid cellular
acceptors in time proportional to logarithm of the
diameter of the input. They also introduced a bottom-
up pyramid cellular acceptor, which is a restricted
version of the pyramid cellular acceptor, and proposed
some interesting open problems about it. On the
other hand, the question of whether processing three-
dimensional digital patterns is much difficult than
two-dimensional ones is of great interest from the
theoretical and practical standpoints. Thus, the study
of three-dimensional automata as the computasional
model of three-dimensional pattern processing has

been meaningful. From this point of view, we are
interested in three-dimensional automata.

In this paper, we study about bottom-up pyramid
cellular acceptors with three-dimensional layers, and
deal with the following problems (which is one of the
open problems) : Does the class of sets accepted by de-
terministic bottom-up pyramid cellular acceptors with
three-dimensional layers include the class of sets ac-
cepted by deterministic three-dimensional finite au-
tomata [3-7]? This paper shows that the class of sets
accepted by three-dimensional finite automata is in-
comparable with the class of sets accepted by deter-
ministic bottom-up pyramid cellular acceptors which
operate in time of order lower than the diameter of the
input.

2 Definition

Let Σ be a finite set of symbols. A three-
dimensional tape over Σ is a three-dimensional rect-
angular array of elements of Σ. The set of all the three-
dimensional tapes over Σ is denoted by Σ(3). Given
a tape x ∈ Σ(3), for each j (1 ≤ j ≤ 3), we let lj(x)
be the length of x along the jth axis. The set of all x
∈ Σ(3) with l1(x) = n1, l2(x) = n2, and l3(x) = n3 is
denoted by Σ(n1,n2,n3). When 1 ≤ ij ≤ lj(x) for each
j (1 ≤ j ≤ 3), let x (i1, i2, i3) denote the symbol in x
with coordinates (i1, i2, i3). Furthermore, we define x
[(i1, i2, i3), (i1’, i2’, i3’)], when i ≤ ij ≤ ij ’ ≤ lj(x) for
each integer j (1 ≤ j ≤ 3), as the three-dimensional
input tape y satisfying the following (i) and (ii) : (i)
for each j (1 ≤ j ≤ 3), lj(y) = ij ’ - ij + 1; (ii) for each
r1, r2, r3 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤
l3(y)), y (r1, r2, r3) = x (r1 + i1 - 1, r2 + i2 - 1, r3 +
i3 - 1).

For each x ∈ Σ(n1,n2,n3) and for each 1 ≤ i1 ≤ n1, 1
≤ i2 ≤ n2, 1 ≤ i3 ≤ n3, x[(i1, 1, 1), (i1, n2, n3)], x[(1,
i2, 1), (n1, i2, n3)], x[(1, 1, i3), (n1, n2, i3)], x[(i1,
1, i3), (i1, n2, i3)], and x[(1, i2, i3), (n1, i2, i3)] are
called the i1th (2-3) plane of x, the i2th (1-3) plane
of x, the i3th (1-2) plane of x, the i1th row on the
i3th (1-2) plane of x, and the i2th column on the i3th
(1-2) plane of x.

We next give some basic concepts about bottom-up
pyramid cellular acceptors with three-dimensional lay-
ers [7]. A bottom-up pyramid cellular acceptor with

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 839



three-dimensional layers (3-UPCA) is a pyramidal
stack of three-dimensional arrays of cells in which the
bottom three-dimensional layer has size 2n × 2n ×
2n (n ≥ 0), the next lowest 2n−1 × 2n−1 × 2n−1,
and so forth, the (n + 1)st three-dimensional layer
consisting of a single cell, called the root. Each cell
is defined as an identical finite-state machine, M =
(QN , QT , δ, A), where QN is a nonempty, finite set
of states, QT ⊆ QN is a finite set of input states,
A ⊆ QN is the set of accepting states, and δ : Q9

N

→ QN is the state transition function, mapping the
current states of M and its eight son cells in a 2
× 2 × 2 block on the three-dimensional layer below
into M ’s next state. As shown in Fig.1, let c be
some cell on the (i + 1)st three-dimensional layer,
and let c (UNW ), c (USW ), c (USE), c (UNE),
c (DNW ), c (DSW ), c (DSE), and c(DNE) be
eight son cells (on the ith three-dimensional layer)
of c, where c(UNW ) is c’s upper northwest son, c
(DNW ) is c’s lower northwest son, etc. For exam-
ple, if the coordinates of c on the (i + 1)st layer is
(1, 1, 1) ((2n, 2n, 2n)), the coordinates of eight son
cells of c on the ith layer c(UNW ), c(USW ), c(USE),
c(UNE),c(DNW),c(DSW),c(DSE), and c(DNE) are
(1, 1, 1), (2, 1, 1), (2, 2, 1), (1, 2, 1), (1, 1, 2), (2, 1,
2), (2, 2, 2), (1, 2, 2), ((2n − 1, 2n − 1, 2n − 1), (2n,
2n − 1, 2n − 1), (2n, 2n, 2n − 1), (2n − 1, 2n, 2n −
1), (2n − 1, 2n − 1, 2n), (2n, 2n − 1, 2n), (2n, 2n, 2n),
(2n − 1, 2n, 2n)), respectively. Then qc (t + 1) = δ
(qc(t), qc(UNW ) (t), qc(USW ) (t), qc(USE) (t), qc(UNE)

(t), qc(DNW ) (t), qc(DSW ) (t), qc(DSE) (t), qc(DNE) (t)),
where for example qc(t) means the state of c at time t.
At time t = 0, the input tape x ∈ Q

(3)
T [l1(x) = l2(x) =

l3(x) = 2n, n ≥ 0] is stored as the initial states of the
bottom three-dimensional layer, henceforth called the
base, in such a way that x (i1, i2, i3) is stored at the
cell of the i1th row and the i2th column on the i3th
plane, and the other cells are initialized to a quiescent
state qs (∈QN−QT−A). As usual, we let δ (qs, qs, qs,
qs, qs, qs, qs, qs, qs) = qs. The input is accepted if and
only if the root cell ever enters an accepting state. This
3-UPCA is called deterministic. A nondeterministic
bottom-up pyramid cellular acceptor is defined as a 3-
UPCA using δ : Q9

N → 2QN instead of the state tran-
sition function of the deterministic 3-UPCA. Below,
we denote a deterministic 3-UPCA by 3-DUPCA,
and a nondeterministic 3-UPCA by 3-NUPCA. A
3-DUPCA (or 3-NUPCA) operates in time T (n) if
for every three-dimensional tape of size 2n × 2n ×
2n (n ≥ 0) it accepts the three-dimensional tape,
then there is an accepting computation which uses
no more than time T (n). By 3-DUPCA (T (n)) [3-
NUPCA(T (n))] we denote a T (n) time-bounded 3-
DUPCA [3-NUPCA] which operates in time T (n).

We next recall a three-dimensional finite automa-
ton [8]. A three-dimensional finite automaton (3-
FA) is a three-dimensional Turing machine with no
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Fig. 1: Bottom-up pyramid cellular acceptor and
three-dimensional layer.

workspace. A 3-FA M has a read-only three-dimens-
ional tape with boundary symbols #’s, finite control,
and an input head, as shown in Fig.2. The input head
can move in six direction − east, west, south, north,
up, or down − unless it falls off the input tape. For-
mally, M is defined by the 5-tuple M = (K, Σ ∪ {#},
δ, q0, F ), where K is a finite set of states, Σ is a finite
set of input symbols, # is the boundary symbol (not
in Σ), δ : K × (Σ ∪ {#}) → 2K×{E,W,S,N,U,D,H} is the
state transition function, where E, W , S, N , U , D,
and H represent the move directions of the input head
− east, west, south, north, up, down, and no move, re-
spectively, q0 ∈ K is the intial state, and F ⊆ K is the
set of accepting states. The action of M is similar to
that of the one-dimensional (or two-dimensional) finite
automaton [4], except that the input head of M can
move in six directions. That is, when an input tape x
∈ Σ(3) with boundary symbols is presented to M , M
starts in its initial state q0 with the input head on x
(1, 1, 1), and determines the next state of the finite
control and the move direction of the input head, de-
pending on the present state of the finite control and
the symbol read by the input head. We say that M
accepts the tape x if it eventually enters an accepting
state. We denote a deterministic 3-FA [nondetermin-
istic 3-FA] by 3-DFA [3-NFA].

We let the input tapes, throughout this paper, be
restricted to cubic ones. We denote the set of all three-
dimensional tapes accepted by M by T (M). Define
£ [3-DUPCA] = [T | T (M) is accepted by some 3-
DUPCA M}. £ [3-NUPCA], £ [3-DFA], etc. are
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Fig. 2: Three-dimensional finite automaton.

defined similarly.
Finally, we give definition of diameter. Given a

subset S of a tape x ∈ Σ(3), we can define its extent
in a given direction θ as the length of its projection
on a plane in that direction. Here the length of a
projection is the distance between its farthest apart
nonzero values. Thus the extent of S is the distance
between a pair of parallel planes perpendicular to θ
that just bracket S. The diameter of S is defined as
its extent in any direction.

3 Results

In this section, we show that the class of sets ac-
cepted by 3-DFA’s is imcomparable with the class of
sets accepted by 3-DUPCA’s which operate in time of
order lower than the diameter of the input. It has of-
ten been noticed that we can easily get several proper-
ties of three-dimensional automata by directly apply-
ing the results of one- or two-dimensional case, if the
input tapes are not restricted to cubic ones. So we let
the input tapes, throughout this paper, be restricted
to cubic ones in order to increase the theoretical inter-
est.

Lemma 3.1. Let T1 = { x ∈ { 0,1 }(3) | ∃ n ( n ≥ 1)
[`1(x) = `2(x) = `3(x) = 2n] and x (2n−1, 2n−1, 2n−1)
= 1 }.Then,
(1) T1(x) /∈ £ [3-DFA], and
(2) T1(x) ∈ £ [3-DUPCA(n)].

Proof : The Proof of (1) is similar to that of The-
orem 3 in [7]. On the other hand, by using the same
technique as in the proof of Lemma 1 in [6], we can get
Part (2) of the lemma. ¤

Lemma 3.2. Let T2 = {x ∈ {0, 1}(3) | ∃n (n ≥ 1)
[`1(x) = `2(x) = `3(x) = 2n] and x [(1, 1, 1), (2n, 2n, 1)]

= x [(1, 1, 2n), (2n, 2n, 2n)] }. Let T (n) be a time func-
tion such that limn→∞ [T (n)/22n] = 0. Then,
(1) T2 ∈ £[3-DFA],and
(2) T2 /∈ £[3-DUPCA(T (n))].

Proof : It is obvious that there is a 3-DFA accepting
T2, and so (1) of the lemma holds. Below, we prove (2).
Suppose that there is a 3-DUPCA B which accepts T2

and operates in time T (n), and that each cell of B has
k states. For each n ≥ 2, let
W (n) = {x ∈ {0, 1}(3)|`1(x) = `2(x) = `3(x) = 2n},
and

W ′(n) = {x ∈ {0, 1}(3)|`1(x) = `2(x) = `3(x) = 2n−1

& x[(1, 1, 1), (2n−1, 2n−1, 1)] ∈ {0, 1}(3)

& x[(1, 1, 2), (2n−1, 2n−1, 2n−1)] ∈ {0}(3)}.

We consider the cases when the tapes in W (n) are
presented to B. Let c be the cell which is situated at
the first row, the first column, and the first plane in the
nth layer (i.e., the layer just below the root cell). (Note
that there are eight cells in the nth layer.) For each
x in W (n) such that x[(1, 1, 1), (2n−1, 2n−1, 2n−1)] ∈
W ′(n), and for each r ≥ 1, let qr(x) be the state of c
at time r when x is presented to B. Then the following
proposition must hold.

Proposition 3.1. Let x, y be two different tapes in
W (n) such that both x [(1, 1, 1), (2n−1, 2n−1, 2n−1)]
and y [(1,1,1), (2n−1, 2n−1, 2n−1)] are in W ′(n) and
x [(1, 1, 1), (2n−1, 2n−1, 2n−1)] 6= y [(1, 1, 1),
(2n−1, 2n−1, 2n−1)]. Then, (q1(x), q2(x), . . . , qT (n)(x))
= (q1(y), q2(y), . . . , qT (n)(y)).

[Proof : For suppose that (q1(x), q2(x), . . . , qT (n)(x))
= (q1(y), q2(y), . . . , qT (n)(y)). We consider two tapes
z, z′ in W (n) such that

(i) z [(1, 1, 1), (2n−1, 2n−1, 2n−1)]
= x [(1, 1, 1), (2n−1, 2n−1, 2n−1)] and

z′ [(1, 1, 1), (2n−1, 2n−1, 2n−1)]
= y [(1, 1, 1), (2n−1, 2n−1, 2n−1)],

(ii) the part of z except for z [(1, 1, 1), (2n−1, 2n−1,
2n−1)] is identical with the part z′ except for
z′[(1, 1, 1), (2n−1, 2n−1, 2n−1)],

and

(iii) z[(1, 1, 1), (2n, 2n, 1)] = z[(1, 1, 2n), (2n, 2n, 2n)].

By assumption, the root cell of B enters the same
states until time T (n), for the tapes z and z′. Since B
operate in time T (n) and z is in T2, it follows that z′ is
also accepted by B. This contradicts the fact that z′ is
not in T2. ¤]
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Let t(n) be the number of different sequences of
states which c enters until time T (n). Clearly, t(n) ≤
kT (n). On the other hand (for any set S, let |S| de-
note the number of elements of S.), |W ′(n)| = 222(n−1)

.
Since limn→∞ T (n)/22n = 0 (by assumption of the
lemma), it follows that |W ′(n)| > t(n) for lange n.
Therefore, it follows that for large n there must exist
two different tapes x, y in W (n) such that

(i) both x[(1, 1, 1), (2n−1, 2n−1, 2n−1)] and
y[(1, 1, 1), (2n−1, 2n−1, 2n−1)] and in W ′(n),

(ii) x[(1, 1, 1), (2n−1, 2n−1, 2n−1)]
6= y[(1, 1, 1), (2n−1, 2n−1, 2n−1)], and

(iii) (q1(x), q2(x), . . . , qT (n)(x))
= (q1(y), q2(y), . . . , qT (n)(y)).

This contradicts the above Proposition 3.1, and
thus the Part (2) of the lemma holds. ¤

From Lemmas 3.1 and 3.2, we can get the following
theorem.

Theorem 3.1. Let T (n) be a time function such that
limn→∞ [T (n)/22n] = 0 and T (n) ≥ n(n ≥ 1). Then
£ [3-DFA] is imcomparable with £ [3-DUPCA(T (n))].

Corollary 3.1. £[3-DFA] is incomparable with £ [3-
DUPCA(n)], which is the class of sets accepted by 3-
DUPCA’s operating in real time.

Corollary 3.2. £ [3-DFA] is incomparable with £[3-
NUPCA(n)].

4 Conclusion

In this paper, we investigated the accepting powers
of bottom-up pyramid cellular acceptors with three-
dimensional layers, and showed that the class of sets
accepted by 3-DFA’s is incomparable with the class
of sets accepted by 3-DUPCA’s which operate in time
of order lower than the diameter of the input. It is
still inknown whether the class of sets accepted by
3-DUPCA’s includes the class of sets accepted by 3-
DFA’s.
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