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Abstract
We think that recently, due to the advances in com-

puter animation, motion image processing, virtual re-
ality systems, and so forth, it is useful for analyz-
ing computation of multi-dimensional information pro-
cessing to explicate the properties of four-dimensional
automata. From this point of view, we first proposed
four-dimensional automata in 2002, and investigated
several accepting powers of them. In this paper, we
coutinue the study, and mainly concentrate on inves-
tigating the relationship between the accepting pow-
ers of four-dimensional finite automata and seven-way
four-dimensional tape-bounded Turing Machines.
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1 Introduction and Preliminaries

We think that recently, due to the advances in
computer animation, virtual reality systems and so
forth, it is useful for analyzing computation of multi-
dimensional information processing to explicate the
properties of four-dimensional automata . From this
point of view, we first proposed four-dimensional au-
tomata in 2002 [3], and investiged several accepting
powers of them [2,4,5]. In this paper, we continue the
study, and show some results for open problems of
four-dimensional finite automata.

Let Σ be a finite set of symbols. A four-dimensional
tape over Σ is a four-dimensional array of elements of
Σ. The set of all four-dimensional tapes over Σ is
denoted by Σ(4). Given a tape x ∈ Σ(4), for each
integer j(1 ≤ j ≤ 4), we let lj(x) be the length of
x along the j th axis. The set of all x ∈ Σ(4) with
l1(x)=n1, l2(x)=n2, l3(x)=n3, and l4(x)=n4, is de-
noted by Σ(n1,n2,n3,n4). When 1 ≤ ij ≤ lj(x) for each
j(1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the symbol in x
with coordinates (i1, i2, i3, i4). Furthermore, we define
x[(i1, i2, i3, i4), (i′1, i

′
2, i

′
3, i

′
4)], when 1 ≤ ij ≤ i′j ≤ lj(x)

for each integer j(1 ≤ j ≤ 4), as the four-dimensional
input tape y satisfying the following conditions : (i)
for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1 ; (ii) for
each r1, r2, r3, r4, (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y),
1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2, r3, r4) =

x(r1 + i1 − 1, r2 + i2 − 1, r3 + i3 − 1, r4 + i4 − 1). We
concentrate on the input tape x with l1(x) = l2(x) =
l3(x) = l4(x), throughout this paper, in order to in-
crease the theoretical interest.

A four-dimensional deterministic (nondeterminis-
tic) Turing machine 4-DTM (or 4-NTM) M, which
can be considered as a natural extension of the three-
dimensional deterministic (or nondeterministic) Tur-
ing machine to four dimensions, consists of a read-
only four-dimensional input tape, a finite control and
one semi-infinite storage tape. A step of M consists of
reading one symbol from each tape, writing a symbol
on the storage tape, moving the input head in speci-
fied direction d ∈ { east, west, south, north, up ,down,
direction of the fourth axis, opposite direction of the
fourth axis, no move }, moving the storage head in
specified direction d′ ∈ { left, right, no move }, and en-
tering a new state, in accordance with the next-move
relation. An SV4-DTM (or SV4-NTM) is a 4-DTM
(or 4-NTM) whose input head can move east, west,
south, north, up, down, and in the direction of the
fourth axis, but not in the opposite direction of the
fourth axis (see Fig.1).

Let L(n) : N → R be a function of a variable n,
where N is the set of all positive integers and R is
the set of all nonnegative real numbers. A 4-DTM
M is said to be L(n) space-bounded if for no input
tape x ∈ Σ(4) with l1(x) = l2(x) = l3(x) = l4(x) =
n does M scan more than L(n) cells on the storage
tape. We denote an L(n) space-bouned 4-DTM (4-
NTM) by 4-DTM(L(n)) (4-NTM(L(n))). A 4-DTM(0)
(4-NTM(0)) is called a four-dimensional deterministic
finite automaton ( four-dimensional nondeterministic
finite automaton), and is denoted by 4-DFA (4-NFA).
Let L[4-DTM] = {T | T = T(M) for some 4-DTM M
}. L[4-NTM], etc.

2 Main Results

In this section, we investigate the relationship be-
tween the accepting powers of 4-XFA’s and SV 4-
Y TM ’s for each X,Y∈ {D ,N }.

It is easy to see that the following lemma holds. So
the proof is omitted here.
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Fig. 1: Four-dimensional Turing machine.

Lemma 2.1. Let T1 = {x ∈ {0, 1}(4)|∃ n ≥ 1 [l1(x) =
l2(x) = l3(x) = l4(x) = 2n+1 & x(n + 1, n + 1, n +
1, n + 1) = 1]}. Then

(1) T1 ∈ L[SV 4-DTM(log n)], and

(2) T1 ∈ L[SV 4-NTM(0)].

Lemma 2.2. Let T2 = {x ∈ {0, 1}(4)|∃ n ≥ 1
[l1(x) = l2(x) = l3(x) = l4(x) = 2n & x[(1, 1, 1, 1),
(2n, 2n, 2n, n)]=x[(1, 1, 1, n + 1), (2n, 2n, 2n, 2n)](that
is, the top and bottom halves of x are identical)]},
and let L(n):N→R be a function such that
limn→∞[L(n)/n4] = 0. Then

(1) T2 ∈ L[4-DTM(log n)], and

(2) T2 /∈ L[SV 4-NTM(L(n))].

Proof: It is easy to prove Part(1), and so the proof is
left to the reader. We then prove Part(2).

Suppose that there exists some SV 4-NTM(L(n))
M accepting T2, and that q is the number of states of
its finite control and t is the number of storage sym-
bols. For each n≥1, let

V(n) = {x ∈ T2| l1(x) = l2(x) = l3(x) = l4(x) =
2n}.

Clearly, each tape in V(n) is accepting by M. Fur-
thermore, for each x in V(n), let

conf(x),the set of configurations of M just after the
point, in the accepting computations on x, where the
input head left the top half of x.

Then the following proposition must hold.

Proposition 2.1. For any two different tapes x,y in

V(n),

conf(x) ∩ conf(y) = φ (empty set).

[For otherwise, suppose that conf(x) ∩ conf(y) 6= φ and
σ ∈ conf(x) ∩ conf(y). It is obvious that if, start-
ing with this configuration σ, the input head proceeds
to read the bottom half of x, then M could enter an
accepting state. Therefore, by assumption, it follows
that the tape z satisfying the following three condi-
tions must be also accepted by M:

(i) l1(z) = l2(z) = l3(z) = l4(z) = 2n;

(ii) z[(1, 1, 1, 1), (2n, 2n, 2n, n)] = y[(1, 1, 1, 1),
(2n, 2n, 2n, n)];

(iii) z[(1, 1, 1, n + 1), (2n, 2n, 2n, 2n)] = x[(1, 1, 1, n +
1), (2n, 2n, 2n, 2n)].

This contradicts the fact that z is not in T2, and
thus the proposition holds. ¤]

Clearly, |V (n)| = 22n·2n·2n·n = 28n4
. On the other

hand, let c(n) be the number of possible configurations
of M just after the input head left the top halves of
tapes in V(n). Then we get the following inequality:

c(n)≤q·(2n + 2)3·L(2n)· tL(2n).

Since limn→∞[L(2n)/16n4] = 0 (by the assumption
of the lemma), |V (n)|>c(n) for large n. Therefore, it
follows that for large n there must be two different
tapes x and y in V(n) such that conf(x) ∩ conf(y)6= φ.
This contradicts Proposition 2.1, and thus Part(2) of
the lemma holds. ¤
Lemma 2.3. Let T3 = {x ∈ {0, 1}(4)|∃ n < 1
[l1(x) = l2(x) = l3(x) = l4(x) = 2n & x[(1, 1, 1, 1),
(2n, n, 2n, 2n)] = x[(1, n + 1, 1, 1), (2n, 2n, 2n, 2n)]]}.
Then

(1) T3 ∈L[SV 4-DTM(logn)],and

(2) T3 /∈L[4-NFA].

Proof: The proof of (1) is omitted here, since it is
obvious. We now prove (2). Suppose that T3 is in
L[4-NFA]. By using the some idea as in the proof of
Lemma 4.3 in [6], it follows that T2 is also in L[4-NFA].
From this fact and the same technique as in the proof
of Lemma 3.5 in [6], it follows that T2 is in L[SV 4-
NTM(n3)]. This contradicts Lemma 2.2(2), and thus
Part(2) of the lemma holds. ¤

It is obvious from definitions that the following
lemma holds.
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Lemma 2.4.

(1) L[SV 4-DTM(0)]⊆L[4-DFA].

(2) L[SV 4-NTM(0)]⊆L[4-NFA].

From the above lemmas, we can prove the follow-
ing theorem concerning the relationship between the
accepting powers of 4-XFA’s (X∈ {D ,N }) and SV 4-
DTM ’s.

Theorem 2.1.

(1) L[4-DFA]( L[SV 4-DTM(n3logn)].

(2) L[4-NFA]( L[SV 4-DTM(n4)].

(3) For any function L(n):N→R such that L(n) ≥
log x (n≥1),

(i) if limn→∞[L(n)/n3logn]=0, then L[3-DFA]=0,
then L[3-DFA] is incomparable with L[SV 4-
DTM(L(n))], and

(ii) limn→∞[L(n)/n4]=0, then L[4-NFA] is incom-
parable with L[SV 4-DTM(L(n))].

(4) L[SV 4-DTM(0)](L[4-DFA].

Proof: By using the same technique as in the proof of
Lemma 3.1 in [6], L[4-DFA]⊆ L[SV 4-DTM(n3logn)].
From this fact, Lemma 2.1(1), and the same technique
as in the proof of Lemma 2.1(2) in [6], it follows that
L[4-DFA]( L[SV 4-DTM(n3logn)] and thus Part(1)
of the theorem holds. Similarly, Part(2) can be proved
by using Lemma 2.3 and the same technique as in the
proof of Lemma 3.3 in [6], and Part(4) can be proved
by using Lemma 2.4(1) and the same technique as in
the proof of Lemma 3.2 in [6].

We then prove Part(3). From Lemma 2.1(1), and
the same technique as in the proof of Lemmas 2.1(2)
and 3.2 in [6], it follow the Case(i) of Part(3) holds.
Case(ii) in also proved by using Lemma 2.3 and the
same technique as in the proof of Lemma 3.4 in [6]. ¤

Remark 2.1. By using the same idea as in the proof
of Lemma 3.2 in [6], we can show that there is no result
which is stronger than Theorem 2.1(1), and by using
the same idea as in the proof of Lemma 3.4 in [6], we
can show that there is no result which is stronger than
Theorem 2.1(2).

We next give the following theorem concerning
the relationship between the accepting powers of 4-
XFA’s(X∈ {D ,N }) and SV 4-NTM ’s.

Theorem 2.2.
(1) L[4-NFA]( L[SV 4-NTM(n3)].

(2) Let L(n):N→R be a function such that
limn→∞[L(n)/n3]=0. Then L[4-DFA] is incompara-

ble with L[SV 4-NTM(L(n))].

(3) Let L(n):N→R be a function such that
L(n)≥logn (n≥1) and limn→∞[L(n)/n3]=0. Then
L[4-NFA] is incomparable with L[SV 4-NTM(L(n))].

(4) L[SV 4-NTM(0)]( L[4-NFA].

Proof: By using the same technique as in the proof
of Lemma 3.5 in [6], L[4-NFA]⊆ L[SV 4-NTM(n3)].
From this fact and Lemma 2.3, it follows that L[4-
NFA]( L[SV 4-NTM(n3)], and thus Part(1) of the
theorem holds. Similarly, Part(4) can be proved by
Lemma 2.4(2) and the same technique as in the proof
of Lemma 3.6 in [6]. We can then proof Part(2) by
using Lemma 2.1(2) and the same technique as in the
proof of Lemmas 2.1(2) and 3.6 in [6]; and Part(3) is
also proved by using Lemma 2.3 and the same tech-
nique as in the proof of Lemma 3.6 in [6]. ¤
Remark 2.2. By using the same idea as in the proof
of Lemma 3.6 in [6], we can show that there is no result
which is stronger than Theorem 2.2(1).

We complete this section by giving the following
theorem concerning the relationship between the ac-
cepting powers of 4-NFA’s and SV 4-DTM ’s.

Theorem 2.3. L[4-NFA]( L[SV 4-DTM((logn)2)].

Proof: It is obvious from Lemma 2.3 and the same
technique as in the proof of theorem 3.5 in [6] that the
theorem holds. ¤

3 Conclusion

In this paper, we mainly concentrated on investigat-
ing the relationship between the accepting powers of
four-dimensional finite automata and seven-way four-
dimensional tape-bounded Turing machines.

It will be interesting to investigate the relationship
between the accepting powers of alternating finite au-
tomata and Turing machines on four-dimensional in-
put tapes (see [1] for the concept of alternation).
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