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Abstract

Firing patterns of neurons are highly variable from
trial to trial, even we record a well-specified neuron ex-
posed to the identical stimulus under same experimen-
tal condition. Trial-to-trial variability of spike trains
may represent some sort of information and give sug-
gestions about neuronal properties.
We propose a new method for quantifying trial-to-trial
variability of spike trains and investigate how char-
acteristics of noisy neural network models affect our
proposed measure.

1 Introduction

Firing patterns of neurons are highly variable from
trial to trial, even when we record a well-specified neu-
ron exposed to the identical stimulus under same ex-
perimental condition ([1][2]). What does the variabil-
ity between trials mean?

There is a fundamental question about the variabil-
ity between trials: is it consistent between the trial
firing rate of a certain neuron and the population fir-
ing rate of a certain trial? This is the question that is
pointed out and went into by Masuda and Aihara[3].
They defined the ergodicity of the spike trains as fol-
lows: the equivalence between the trial firing rate and
the population firing rate[3].

Needless to say, firing rate is a first order statistics.
It is important for information coding problem to ex-
tend this concept to the higher order statistics[4][5].
In this section, we extend the first order statistics dis-
cussed in [3] to the higher order statistics. We quantify
the ergodicity, and examine the relationship between
the ergodicity and the properties of neuron and the
inputs.

2 Statistics of the variability along
time and between trial

We characterize the neuronal firing patterns by em-
ploying the measure of irregularity CV [6]. CV is com-
puted as the standard deviation divided by the mean.
CV take 1 for the purely Poisson process, and 0 for
perfectly periodic sequences. CV indicates the global
spiking irregularity.

Generally speaking, CV is the measure of firing ir-
regularity along time. In this study, we use this CV

not only for the conventional meaning, but also for the
irregularity between trials. Irregularity between trials
means how the spike pattern obtained from a certain
neuron fluctuates with each trial. For instance, if the
spike patterns are the same for each trial, i.e. syn-
chronizing among trials, the quantity of the statistics
would be small. In general, synchrony indicates the
synchrony between neurons, however, trial synchrony
is also widely studied[7].

Even if it is not strictly synchronizing between tri-
als, similar spike patterns make the irregularity mea-
sure small. Small irregularity between trials means
high reproducibility in other words.

Irregularity between trials is measured by the fol-
lowing procedure. First, set all the trials to time,
and divide them by the time bin. Second, connect
them over trials and produce a new set of ISIs. In this
method, all the bins including the ones that have no
ISIs would be measured. Finally, measure the statis-
tics for a new set of ISIs.

By using the statistics of irregularity between trials
and conventional statistics along time, we will discuss
their behaviors in the following sections. For discrimi-
nating them, we will denote the irregularity along time
as CV,time, irregularity between trials as CV,trial.

In addition, the value of statistics in this study is
very small, but this is because we are considering the
case of periodic inputs and small noise. It becomes
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regular along time since the inputs are periodic, and
also becomes regular between trials since the spike pat-
terns are almost nearly synchrony.

3 Statistics along time and across trials
in LIF model

We use the simple model, leaky integrate-and-
fire(LIF) model[8]. This model is the model that treats
firing events as a point process[9], which is shown be-
low in case.

dV (t) = (−γV (t) + Iext(t) + Isyn(t))dt + DdBt, (1)

where V (t) denotes the membrane potential, γ de-
notes the time constant of membrane, Iext(t) denotes
the external inputs, Isyn(t) denotes the synaptic input
from other neurons, D is the intensity of the noise, Bt

represents Brownian motion[6]. Noise term DdBt con-
tains the background activity which is independent of
firing events. If membrane potential V (t) reaches the
threshold, membrane potential would be reset to the
resting potential.

3.1 Variability of refractory period

In general case, neuron does not fire right after the
spike event, where the term is called absolute refrac-
tory period. Here, we examine how the length of the
refractory period affects the firing statistics. External
input Iext(t) is added as below.

dV (t) = (−γV (t) + Iext(t) + Isyn(t))dt + DdBt, (2)

Iext(t) = (1 +
τref

80
)(4.9 · 10−2 + 3.0 · 10−3 sin(

2πt

T
)). (3)

τref denotes the length of the refractory period, T
is the period of the external input. Neuron cannot fire
in the term of τref . To get rid of the effect of firing
rate difference, the term of τref is added to Iext(t) to
keep the firing rate constant.

Figure1 represents the firing statistics of neuron
that receives the sinusoidal input affected by the
length of the absolute refractory period.

As in figure 1, CV,time, which denotes the firing ir-
regularity along time decreases as the refractory period
increases, which means the firing pattern along time
is becoming more regularly. While, CV,trial, which is
the firing statistics across the trials is represented as
in figure 2.

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  5  10  15  20

C
V

tim
e

length of refractory period (ms)

Figure 1: Irregularity of spike trains along time in the
case of variable refractory period
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Figure 2: Irregularity of spike trains across trials in
the case of variable refractory period

As in figure 2, CV,trial, which denotes the firing
irregularity along time also decreases as the refrac-
tory period increases, which means the firing pattern
across the trials is becoming more regularly. Regu-
lar firing pattern across trials indicates the firing is
more reproducible as the length of refractory period
increases. These results correspond to the former the-
oretical results[10].

3.2 Variability of input intensity

Next, we consider the effect of input to each statis-
tics. We add cosine wave to LIF model, and consider
the relationship between input intensity and the statis-
tics. Model is represented as below.

dV (t) = (−γV (t) + Iext(t) + Isyn(t))dt + DdBt, (4)
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Iext(t) = Iext(t) + amp · cos(
2πt

T
), (5)

Isyn(t) = 0, (6)

where Iext(t) denotes the temporal average of
Iext(t), amp is the intensity of the input. We neglect
the synaptic input by setting Isyn(t) = 0, since our
aim is to consider the effect of external inputs to the
firing statistics.

Figure 3 and 4 represent the behavior of statistics
along time and across trials, in the case of variable
input intensity amp.
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Figure 3: Irregularity of spike trains along time in the
case of variable input intensity
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Figure 4: Irregularity of spike trains across trials in
the case of input intensity

It is evident from figure 3 and 4 that both of the
statistics, along time and across trials, decrease as the
input intensity increases. This means that firing pat-
tern is more regular and reproducible as the input in-
tensity increases.

4 Firing statistics in neuronal popula-
tion

In the former section, we considered the effects of
refractory period and the input intensity to the firing
statistics. Those discussions are based on the neuronal
and input properties of single neuron, and quantified
the ergodicty that is discussed in [3] by introducing
the statistics across trials.

In this section, we consider the statistics in the case
of multiple neurons, multiple trials. Concretely speak-
ing, we consider the behaviors of firing irregularity
across trials of single neuron, and firing irregularity
between neurons by connecting multiple LIF models.

Firing irregularity across trials is measured as in the
former section. The procedure of measuring the firing
irregularity between neurons is depicted as follows.

First, set all the neuronal firing patterns of single
trial and divide them by the time bin. Second, connect
them over different neurons and produce a new set of
ISIs. Finally, measure the statistics for a new set of
ISIs. To avoid producing nonexistent ISIs by connect-
ing the edges, the ISIs that lie on edges of a bin is ex-
cluded. In this method, all the bins including the ones
that have no ISIs would be excluded. We denote the
irregularity between other neurons as CV,pop. CV,pop

can be interpreted as the statistics which represents
the synchrony and the correlations between neurons.

To consider the firing irregularity between neurons,
we construct a simple model depicted as follows.

First, connect 100 neurons randomly. External in-
put Iext(t) is added common to all the neurons. If the
neuron fires, 30 postsynaptic neurons are randomly se-
lected, and synaptic inputs are provided to them by
input intensity ϵ.

Concretely, the model is depicted as follows.

dV (t) = (−γV (t) + Iext(t) + Isyn(t))dt (7)
+DdBt, (8)

Iext(t) = A(4.9 · 10−2 + 5.6 · 10−3 sin(
2πt

T
),(9)

|Isyn(t)| = ϵ. (10)

Here, A represents the intensity of external input,
ϵ represents the intensity of synaptic input. Intensity
balance of A and ϵ determines the superiority occupied
in the inputs.

Figure 5 shows the irregularity between neurons
and across trials when the balance of external inputs
and synaptic inputs varies.

When the external input is superior, the value of
CV,pop is high, while the value of CV,trial is high when
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Figure 5: The irregularity between neurons and across
trials when the balance of external inputs and synaptic
inputs varies.

the synaptic input is superior. This means that ir-
regularity between neuron increases when external in-
put is superior, which indicates that the firing pat-
terns gets more different between neurons. Conversely,
when synaptic input is superior, irregularity across tri-
als increases, which indicates the less reproducible fir-
ing. These results show that synaptic inputs induce
the regular firing of neuronal population, while exter-
nal inputs induce the regular firing across trials.

5 Discussion

We introduced the new statistics of irregularity
along time, across trials, and between neurons, to
quantify the ergodicty of spike trains that is discussed
in [3]. For the spike trains obtained from single neuron,
the following results are confirmed. 1. More regular
and reproducible spike trains are obtained as the re-
fractory period lengthens. 2. More regular and repro-
ducible spike trains are obtained as the input intensity
increases. The statistics along time and across trials
both behave similarly for the modulation of refractory
period and input intensity.

In the case of spike trains observed from multiple
neurons, regular firing in neuronal population is ob-
tained when synaptic inputs are superior, while re-
producible firing is obtained when external inputs are
superior. The statistics across trials and between neu-
rons exhibited contrary behaviors for the input prop-
erties. This result might be useful to estimate the
property of inputs.

Generally, variability of firing patterns for each trial

is neglected, and statistics of ISIs are often averaged
over trials. In the statistical analysis, statistics along
time has only been treated. By introducing the statis-
tics across trials and between neurons as in this study,
it may be possible to extract the information that has
not been considered. Therefore, it is also important
from the viewpoint of information coding [4][5].

It is a future issue to apply these statistics for phys-
iological data and decode from the data and estimate
the properties of neuron and inputs.
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