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Abstract
Missing value estimation is usually an important

preprocess for analyzing gene expression matrices be-
cause subsequent statistical analyses and machine
learning algorithms usually require complete data ma-
trices. In this article, we propose a novel probabilistic
model, two-way factor analysis (2FA), which assumes
heterogeneous noise variances which are specific to
both samples and features simultaneously. We applied
this model to missing value estimation tasks of syn-
thetic and real gene expression data and compared the
performance with those of conventional models such
as probabilistic principal component analysis (PPCA)
and factor analysis (FA). The 2FA model showed supe-
rior estimation performance to those by other models.

Keywords
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1 Introduction

Biological experiments often include missing obser-
vations due to troubles in the measurement process,
low qualities of samples or many other reasons. In
bioinformatics, such missing values should be imputed
in advance of the subsequent data analyses because
many analysis methods based on statistics and ma-
chine learning algorithms, such as clustering, classi-
fication and dimension reduction, require complete-
data matrices. In particular, DNA microarray, which
is a high-throughput measurement technology used in
a wide range of biological area, could include consid-
erable number of missing entries possibly due to in-
jury and dirt on arrays. Various estimation methods
are proposed in order to achieve high accuracy of the
missing value estimation [1, 2, 3].

When dealing with matrix data, there have been
matrix factorization techniques, such as singular value
decomposition (SVD), weighted low-rank matrix fac-

torization [7], probabilistic principal component anal-
ysis (PPCA) [4], and factor analysis (FA) [5]. PPCA
and FA are based on linear-Gaussian latent variable
models with different noise models, namely, PPCA
assumes that each component in an observed matrix
includes i.i.d. noise with an identical variance, and
FA assumes that each sample vector in an observed
matrix includes i.i.d. noise whose variance depends
on each gene [6]. The assumptions in PPCA and FA
are insufficient, however, when considering a microar-
ray dataset which may include both bad samples (i.e.,
certain experiments whose measurement qualities are
worse than the others) and bad features (i.e., certain
genes whose probe qualities are worse than the others)
simultaneously.

In this study, we consider to integrate two kinds of
noises; one is specific to each sample and the other to
each feature, which no longer allows i.i.d. assumption,
and therefore is called a two-way noise situation. In
this study, we first show a generalization of linear-
Gaussian latent variable models to handle weighted
low-rank matrix approximation and to obtain simpler
and more sophisticated treatment. Then, we propose
a probabilistic model to deal with the two-way noise
situation, called 2FA, and its estimation method are
derived based on the maximum-likelihood framework.
We apply the proposed model and some conventional
models to synthetic and real datasets and show the
advantage of the proposed model in terms of accuracies
of the missing value estimation.

2 Method

Low-Rank Matrix Approximation Low-rank
matrix approximation is a numerical method to ob-
tain compact representation of a matrix, by obtain-
ing a factored form which minimizes a pre-determined
cost function. This method is robust against observa-
tion noise and missing values, and is efficiently used for
noise filtering and missing value imputation. Srebro &
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Jaakkola [7] proposed a weighted low-rank matrix ap-
proximation (WLRA) which minimizes the weighted
Frobenius norm given by

J(U,V) =
M∑
i=1

N∑
j=1

wij

(
Yij −

K∑
k=1

UikVjk

)2

, (1)

where U ∈ RM×K and V ∈ RN×K are factorization
matrices of the target matrix Y ∈ RM×N , wij is a
weight that represents the approximation error of each
element. These authors also performed missing value
estimation by setting zero weight on missing elements
in the matrix.

A Linear-Gaussian latent variable model is repre-
sented as a special case of WLRA. The observed vari-
able y ∈ RM is obtained by applying a linear trans-
formation to a latent variable z ∈ RK(K < M) with
an additional Gaussian noise ε ∈ RM :

y = Uz + µ + ε, (2)

where U ∈ RM×K is a factor loading matrix, µ ∈ RM

is a mean parameter vector, and ε ∼ N (0,Ψ) is a
Gaussian noise vector. PPCA and FA are probabilis-
tic generative models which assume an isotropic co-
variance matrix Ψ = σ2I and a diagonal covariance
matrix Ψ = diag(σ2

1 , · · · , σ2
M ), respectively.

The model mentioned above can also be repre-
sented by a matrix, in which an observation matrix
Y ∈ RM×N whose columns are {yj}, j = 1, . . . , N , is
given by

Y = UVT + E, (3)

where V ∈ RN×K is a coefficient matrix. E is a
noise matrix whose components are Gaussian noises
Eij ∼ N (0, σ2

ij). Rows of the coefficient matrix V
correspond to {zj}, j = 1, . . . , N , and the latent vari-
ables are usually generated by Gaussian distribution in
a standard formulation. Consequently, the likelihood
function of the data matrix Y is given by

L = ln p
(
Y|U,V, {σ2

ij}
)

+ ln p(V)

=−1
2

M∑
i=1

N∑
j=1

ln 2πσ2
ij +

1
σ2

ij

(
Yij−

K∑
k=1

UikVjk

)2


− 1
2

N∑
j=1

K∑
k=1

{
ln 2π + V 2

jk

}
.

Comparing to the cost function (1) of the weighted
low-rank matrix approximation, it is obvious that the

estimated matrix UVT by the maximum likelihood
and that by the WLRA are equivalent if the WLRA
weights are set at the inverse variance of each compo-
nent.

Missing Value Estimation with 2FA Model
Based on the above-introduced view-point of the low-
rank matrix approximation, we propose a novel prob-
abilistic model which assumes that the noise levels in
elements of the matrix depend on both samples and
features simultaneously, while the i.i.d. assumption
of observation vectors no longer holds. Namely, we
assume Gaussian noise whose variance σ2

ij is a sum
of sample-wise variance σ2

ri and feature-wise variance
σ2

cj , called two-way noise;

p(Eij) = N (0, σ2
ij), (σ2

ij = σ2
ri + σ2

cj). (4)

We call the WLRA model incorporating the two-way
noise model above, the two-way factor analysis (2FA).

The likelihood of parameters based on observed
data Yo including missing values is then given by

L = ln p
(
Yo|U,V, {σ2

ij}
)

+ ln p(V)

=−1
2

M∑
i=1

N∑
j=1

wij

lnσ2
ij +

1
σ2

ij

(
Yij−

K∑
k=1

UikVjk

)2


− 1
2

N∑
j=1

K∑
k=1

V 2
jk + const., (5)

where wij = 0 if the observation Yij is missing or wij =
1 otherwise. Note that we can regard the negative
likelihood as the weighted norm of the low-rank matrix
approximation.

To perform matrix factorization and estimate the
parameters of the two-way noise model, we applied a
conjugate gradient procedure, as Srebro & Jaakkola
[7] recommended for WLRA. As Maeda & Ishii [8]
pointed out, convergence of the EM algorithm can be
slow if there are strong correlations between parame-
ters because the conventional EM updates are done in
a coordinate-descent manner.

3 Experiments

We applied our model to estimating low-rank ma-
trix representations of some matrix datasets including
missing values and compared its missing value estima-
tion performance with those by some conventional pro-
cedures. The SVD imputation applies singular value
decomposition to an observed matrix whose missing
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Figure 1: Color map of noise variance levels in an ar-
tificial two-way noise matrix E. Numbers in the figure
are indices of regions. The variance of the gray region
is given by a product of the original noise level σ2

X

and a noise ratio A. The variance of the black region
is twice as large as that of gray regions. The variance
of white region is almost zero, ln(1 + Aσ2

X) × 10−3.

values are simply imputed with 0, then matrix is re-
constructed by employing a certain number of singular
vectors with the largest singular values. PPCA, FA
and FAc procedures are almost equivalent to the pro-
posed 2FA procedure except that, the Gaussian noise
variances behind the noise matrix are assumed to be
same in all elements in the matrix, same for all fea-
tures (row vectors), and same for all samples (column
vectors), respectively.

We prepared a 1000 × 50 synthetic matrix of rank
3 and a 3170 × 22 gene expression matrix taken from
the breast cancer database, BRCA [9]. These are the
base matrices. We then added a two-way noise ma-
trix E to each of the base matrices X, so that one-
third rows and one-third columns of E have a higher
variance than the other rows and columns, and thus
E is constituted by four regions with different noise
variances (See illustration of Figure 1). This two-way
noise process simulates the existence of bad features
and bad samples. The variance levels in the two-way
noise are determined as Aσ2

X, where σ2
X is the variance

of the original base matrix and A is an artificially-
introduced noise ratio (A = 0, 1, 3, 5, 10). Although
the BRCA matrix already includes unknown noise, we
further added two-way noise to BRCA to simulate the
situation we assume.

After that, 10% entries of these matrices were ran-
domly masked as missing. From the observed part
of the matrix, the artificially-introduced missing en-
tries were estimated by 2FA and other conventional
models, where we set the rank of the estimated ma-
trix at consistently 3. The performance of the miss-
ing value prediction was evaluated by normalized root
mean squared error (NRMSE) in region 1 (in Figure
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Figure 2: Comparison of the NRMSEs of matrix ap-
proximation by SVD, PPCA, FA, FAc and 2FA mod-
els on the synthetic matrix added by a two-way noise.
The horizontal axis represents the noise ratio. The
NRMSEs were examined on region 1 with respect to
the artificially-introduced missing values. The mark-
ers and the errorbars denote means and standard de-
viations over ten simulations, respectively.

1):

NRMSE =
√

mean
[
(Xanswer−Xguess)

2
]/

sd [Xanswer] ,

where Xanswer and Xguess are sets of true and esti-
mated values, respectively. When 2FA is applied, it
is also important to estimate the noise variance ap-
propriately. We assessed the estimated variance on all
of the four regions when noise ratio was set at large,
A = 10. Figures 2 and 3 show the missing value pre-
diction errors for the synthetic matrix of rank 3 and
the BRCA data matrix, respectively. In each figure,
estimation errors for various noise ratios are shown.
We compared performances by 2FA, SVD, PPCA, FA
and FAc. In these figures, we see the 2FA exhibited
better performance than the others especially when
the noise ratio was large.

Figure 4 shows the estimated noise variance level in
each region, and Table 1 shows true variance in each
region. The variance was estimated well in each region.
The good estimation performance of the sample-wise
or feature(gene)-wise variances implies that we could
reject bad samples or bad features by applying a cer-
tain threshold to the estimated variances.

4 Conclusions

In this study, we first reformulated weighted low-
rank matrix approximation as a probabilistic model,
and gave a unified viewpoint of linear-Gaussian la-
tent variable models. Based on this framework, we
proposed the 2FA model which assumes noise pro-
cess depending of both features and samples. For the
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Figure 3: Comparison of the NRMSEs of matrix ap-
proximation by SVD, PPCA, FA, FAc and 2FA mod-
els on the gene expression matrix (BRCA) added by
an artificial two-way noise. The horizontal axis rep-
resents the noise ratio. The NRMSEs were examined
on region 1 with respect to the artificially-introduced
missing values. The markers and the errorbars denote
means and standard deviations over ten simulations,
respectively.

synthetic data and gene expression data, 2FA model
showed superior performance of missing value estima-
tion to the other models especially when there is a
large noise ratio between the high and low variance
parts in the two-way noise matrix. Since the 2FA could
also estimate the variances of the two-way noise with
high accuracy, such estimation could be a guide to
reject bad samples or bad features in a data matrix,
along with performing missing value estimation.

For practical applications, we will incorporate a
model selection framework into the 2FA model to se-
lect the appropriate rank, for example, by using au-
tomatic relevance determination. In addition, we will
improve the convergence speed and the computational
cost of the estimation algorithm. These are our near-
future works.
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