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Abstract 

 
  Functional Near-Infrared Spectroscope (fNIRs) is one 
of the latest technologies which utilize light in the 
near-infrared range to determine brain activities. 
Near-infrared technology allows design of safe, portable, 
wearable, non-invasive and wireless qualities monitoring 
systems. This indicates that fNIRs signal monitoring of 
brain hemodynamics can be value in helping to 
understand brain tasks. In this paper, we present results 
of fNIRs signal analysis to show that there exist distinct 
patterns of hemodynamic responses which recognize 
brain tasks toward developing a Brain-Computer 
interface. We applied Higuchi’s fractal dimension 
algorithms to analyse irregular and complex 
characteristics of fNIRs signals, and then Wavelets 
transform is used to analysis for preprocessing as signal 
filters and feature extractions and Neural networks is a 
module for cognition brain tasks. Throughout two 
experiments, we have demonstrated the feasibility of 
fNIRs analysis to recognize human brain activities. 
 
Keywords: functional near infrared spectroscope (fNIRs), 
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1   Introduction 
 

  In recent years, functional near-infrared spectroscopy 
(fNIRs) has been introduced as a new neuroimaging 
modality with which to conduct functional brain-imaging 
studies. fNIRs technology uses specific wavelengths of 
light, introduced at the scalp, to enable the noninvasive 
measurement of changes in the relative ratios of 
deoxygenated hemoglobin (deoxy-Hb) and oxygenated 
hemoglobin (oxy-Hb) during brain activity. Wireless 
fNIRs system consists of personal digital assistant (PDA) 
software controlling the sensor circuitry, reading, saving, 
and sending the data via a wireless network. This 
technology allows the design of portable, safe, affordable, 
noninvasive, and minimally intrusive monitoring systems 
[1]. 
For such advanced features, fNIRs signal processing 

really becomes an attractive field for computational 
science. In [3], M. Izzetoglu and et.al. investigated 
canceling motion artifact noise from fNISs signals by 
Wiener filter. The authors indicated that the noise 
including in fNIRs is an important limitation on the use 
of optical data in these applications. Motion artifact can 
cause the NIR detectors to shift and lose contact with the 
skin, exposing them to either ambient light or to light 
emitted directly from the NIR sources or reflected from 
the skin, rather than being reflected from tissue in 
regions of interest. Another noise can cause the blood to 
move toward (or away from) the area that is being 
monitored, increasing (or decreasing) the amount of 
oxygen, hence result in an increase (or decrease) in the 
measured data. Hence, canceling noise from fNIRs 
signals is one of necessary tasks in order to use fNIRs as 
a brain monitoring technology in its full potential to 
many real life application areas. In [4], M. Izzetoglu and 
el.al. presented statistical analysis of fNIRs signals for 
the purpose of cognitive state assessment while the user 
performs a complex task. The results indicated that the 
rate of change in blood oxygenation of fNIRs signals was 
significantly sensitive to task load changes and correlated 
fairly well with performance variables.  In [5] [6], S. 
Fantini and et.al. describe a specific frequency-domain 
instrument for near-infrared spectroscopy and imaging of 
tissues proven that the hemodynamic changes monitored 
with NIR spectroscopy correlate with the activation state 
of the  cortex in response to a stimulus. They 
investigated the possibility of combining phase and 
average intensity data in fNIRs frequency-domain 
imaging of the brain activation presenting different 
spatial/temporal features.   
In this work, we consider fNIRs signals and analyze 
irregular and complex characteristics by Higuchi fractal 
dimension algorithms. This method was successfully 
applied for EEG bio-signal processing in [8], [9]. Fractal 
dimension values along period of time sever as 
meaningful characteristics of studied bio-signals. With 
obtained experiment results, fractal dimensions of fNIRs 
signals can not clearly indicate information of brain 
activities. Therefore, we proposes Wavelet-Neuron 
model to recognize brain activities through fNIRs signals. 
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Wavelet transform became the foundation for the most 
popular techniques for signal analysis and representation 
in a wide range of applications. Wavelets processing play 
a role of extraction algorithm to draw features of fNIRs 
signals and to filter high frequency noises. Extracted 
features are inputs of neural networks to classify brain 
tasks. Neural networks are very powerful tools for 
pattern recognition. The neural network used wavelets 
coefficients as its inputs and brain activities are depicted 
by outputs. The paper is organized as follows: In section 
2, the mathematics basic models are set up including 
Higuchi’s fractal dimension algorithm, Wavelet 
transform, and Neural Network model. In section 3, 
fNIRs data acquisition is described including instruments 
and 2 experiments. Section 4 shows results and 
discussion. Section 5 is conclusion. 

 
2  Methods 
 

Higuchi’s algorithm shown in [10] performs fractal 
dimension of a time series directly in the time domain. 
Its principle is based on a measure of length, L(k), of the 
curve that represents the considered time series while 
using a segment of k samples as a unit. If L(k) scales like  

fDk)k(L −≈    (1) 
Fractal dimension, Df, equals 1 for a simple curve and 
equals 2 for a curve which nearly fills out the whole 
plane. Df measures complexity and irregular 
characteristics of time series signals. 
From [11], the wavelets transform of a signal s is the 
family C(a,b), which depends on two indices a and b. C 
represents how closely correlated the wavelet is with this 
section of the signal. The higher C is, the more the 
similarity. More precisely, if the signal energy and the 
wavelet energy are equal to one, C may be interpreted as 
a correlation coefficient. The set to which a and b 
belong: 

∫
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Where:  
a=2j , b=k.2j , (j,k) ∈ Z2  
ψ is wavelet functions 
a is scale of wavelets functions 
b is position of wavelets functions on the signal s. 
The main aim of this paper is recognition and 
classification fNIRs signals corresponding to brain 
activities.  After testing for non-linear in fNIRs signal 
by Higuchi fractal dimension and feature extracting by 
wavelet transforms, neural networks are very powerful 
tools for classification or pattern recognition shown in 
[11]. Informative features are extracted from the 
coefficients computed with the wavelets transform and 
used as inputs for classification.  
As usual, the back propagation training is based on the 
minimization of the following quadratic cost function: 
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   (12) 
Where: 
N is number of patterns. 
yn is output of network 
dn is desired output.  
 

3  fNIRs data acquisition 
 
We used a multichannel fNIRs instrument, OMM-3000 
from Shimadzu Corporation, Japan, for acquiring 
oxygenated hemoglobin and deoxygenated hemoglobin 
concentration changes. The system operated at three 
different wavelengths of 780 nm, 805 nm and 830 nm, 
emitting an average power of 3 mW.mm−2. The 
illuminator and detector optodes were placed on the 
scalp. The detector optodes were fixed at a distance of 3 
cm from the illuminator optodes. The optodes were 
arranged above the hemisphere on the subject's head. 
Near-infrared rays leave each illuminator, pass through 
the skull and the brain tissue of the cortex and are 
received by the detector optodes. The photomultiplier 
cycles through all the illuminator–detector pairings to 
acquire data at every sampling period. The data were 
digitized by the 16-bit analog to digital converter. 
Because oxygenated and deoxygenated hemoglobin have 
characteristic optical properties in the visible and 
near-infrared light range, the change in concentration of 
these molecules during neurovascular coupling can be 
measured using optical methods By measuring 
absorption changes at two (or more) wavelengths, one of 
which is more sensitive to oxy-Hb, the other to 
deoxy-Hb, changes in the relative concentrations of these 
chromophores can be calculated. Using these principles, 
researchers have demonstrated that it is possible to assess 
brain activity through the intact skull in adult humans 
The fNIRs instrument was capable of storing the raw 
signals for each of channels, one of which consists of the 
intensity values of 3 wavelengths, as well as the derived 
values of oxygenated hemoglobin [Ox-Hb], 
deoxygenated hemoglobin [Deox-Hb] and total 
hemoglobin [total-Hb]= [Ox-Hb] + [Deox-Hb] 
concentration changes for all time points in an output file 
in a pre-specified format. Under the view of recognition 
brain activities, we chose the total hemoglobin [total-Hb] 
concentration changes to analysis its functions. 
In this work, we investigate 2 tests to recognition brain 
activities. Test 1 is implemented with a 32 year old male 
doing three tasks, as follow: 
Task 1: controlling physical motion of right arm,    
Task 2: imaging the motion of right arm,    
Task 3: relaxing. 
Each of tasks is measured during 3 minutes, by 7 
channels, and sampling frequency 18Hz.  
Test 2 is implemented with a 28 year old male with 
mission imaging numerical push on a calculator. Each of 
imaging tasks corresponding to a number is measured 
during 1 minute, by 17 channels, and sampling frequency 
10Hz. 
 

4.  Results and Discussion 
 
The first test acquired 3275 points, in which each 100 
point is enough to calculate fractal dimension, Df, called 
window index runing along the signals. Computing 
results are shown in Fig. 1.  
Fig. 1  shown that fractal dimension mostly more over 
than 1.9 indicating high degree of complexity of fNIRs 
signals as well as complexity of brain dynamics 
generating the given bio-signals. However these results 
can not demonstrate difference in each task of human 
brain activities. Therefore, we use model combining 
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Wavelet Transform and Neural Networks to recognizing 
brain activities.  

 
Fig. 1. Fractal dimension of three fNIRs channels of 3 
tasks of the first test corresponding to circle-point line, 
square-point line, and triangle-point line 
  
In the first test, Wavelet mother is chosen discrete 
approximation of Meyer wavelet. Level of 
decomposition is 3. SNRgain are calculated for each 
channel and shown in Table 1. 

 
Table 1. Signal to noise ratio (SNR) gain of 7 

channels and 3 tasks. 
Total-Hb Ch-1 Ch-2 Ch-3 Ch-4 Ch-5 Ch-6 Ch-7 
Task 1 2.70 2.57 3.12 2.89 0.25 1.26 0.88 
Task 2 4.70 1.15 5.26 2.28 0.70 0.75 1.12 
Task 3 3.00 2.23 3.57 2.99 0.30 1.42 0.91 
 
From Table 1, SNG-gain average is calcutated as 
SNRgain-average = 2.10 

Multilayer neural network is built with 3 layers. 
Input layer consists of 7 neurons corresponding to 7 
fNIRs channels. 7 neurons are set for hidden layer and 1 
neuron for output layer. The transfer functions of the 
hidden layer are chosen tagsig-function while the transfer 
functions of output neurons are purelin-function, a linear 
function, for representation of many different classes, 
output equals to +1, 0, -1 corresponding to task 1, 2, 3. 
The error of Neural training processing shows in Fig. 2, 
with mean square error of classification is 9.82e-05 in 
200 epochs. The output of neural model indicates 
separately 3 distinguished tasks in Fig. 3.  

 
Fig. 2. The error of neural network training processing 
corresponding to 200 epochs of the first experiment.  

 
Fig. 3. Output of neural network recognizing 3 
distinguished tasks of brain activities 
  

 
Fig. 4. The error of neural network training processing 
corresponding to 1000 epochs of the second experiment 
 

 
Fig. 5. Output of neural network recognizing 10 
distinguished tasks of brain activities. 
 
In the second test, SNG-gain average is calcutated as 
SNRgain-average = 2.97. 

Multilayer neural network is built with 3 layers. 
Input layer consists of 17 neurons corresponding to 17 
channels of fNIRs signals. 17 neurons are set for hidden 
layer and 1 neuron for output layer. The transfer 
functions of the hidden layer are chosen tagsig-function 
while the transfer functions of output neurons are 
purelin-function, a linear function, for representation of 
many different classes, output values from 0 to 9 
correspondind to numerical imaging from 0 to 9. The 
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error of Neural training processing shows in Fig. 4, with 
mean square error of classification is 4.79e-04 in 1000 
epochs. The output of neural model indicates separately 
10 distinguished tasks in Fig. 5.  

All two experiments show that classified 
wavelet-neuron models obtain the high accuracy. The 
results determine advantages of wavelets analysis as 
preprocessing and neural networks as classified models.  

With many advantages of fNIRs, safe, portable, 
affordable and high accuracy of computing pattern 
recognition. A Brain-computer interface (BCI) using 
fNIRs signals will be developed as an alternate mode of 
communication and environmental control. Especially 
disable patients with cognitive ability to communicate 
with their social environment can live with a reasonable 
quality of life over extended period time.  
 

5  Conclusion 
 

In this study, we have demonstrated the feasibility of 
fNIRs analysis to recognize human brain activities. 
fNIRs opens many excellent opportunities to cognition 
brain activities and interface to computer as future BCIs. 
The limited paper contributes analyzing nonlinear 
characteristics of fNIRs by Higuchi’s fractal dimension, 
extracting signal features by wavelet transforms, and 
recognizing brain activities by neural network. In future, 
we will indicate the potential use of such techniques to 
online fNIRs-BCI systems.    
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