
Digital Control of Space Robot Manipulators with Velocity Type Joint Controller

Using Transpose of Generalized Jacobian Matrix

Shinichi Sagara† Yuichiro Taira‡

† Department of Control Engineering, Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail: sagara@cntl.kyutech.ac.jp

‡ Department of Ocean Mechanical Engineering, National Fisheries University
Nagata-Honmachi, Shimonoseki 759-6595, Japan

E-mail: taira@fish-u.ac.jp

Abstract

For free floating space robots having manipula-
tors, we have proposed a discrete-time tracking control
method using the transpose of Generalized Jacobian
Matrix (GJM). Control inputs of the control method
are joint torques of the manipulator. In this paper, the
control method is augmented for angular velocity in-
puts of the joints. Computer simulations have shown
the effectiveness of the augmented method.

1 Introduction

For space robots having manipulators many control
methods of space robot manipulators have been pro-
posed [1]. Most of them, however, use the inverse of
Generalized Jacobian Matrix (GJM) which is a coef-
ficient matrix between the end-effector’s velocity and
the joint velocity of the manipulator. Therefore, if the
robot system becomes in a singular configuration, the
manipulator is out of control because the inverse of
GJM does not exist.

We have proposed discrete time control methods us-
ing the transpose of GJM [2, 3]. The control methods
using the transpose of GJM use position and orienta-
tion errors between the desired and actual values of
the end-tip of the manipulator. Namely, the control
methods belong to a class of constant value control
such as PID control. Therefore, the value of errors
depends on the desired linear and angular velocity of
the end-tip based on the desired trajectory.

To obtain higher control performance we have pro-
posed a digital trajectory tracking control method that
has variable feedback gains depending on the desired
linear and angular velocity [5]. Furthermore, the con-
trol method can be applied for cooperative manipula-
tions of a floating object by some space robots [6].

The tracking control method described above can
be utilized for manipulators with joint torque con-
troller. It is considered that joint velocity controllers
are also used for space robot manipulators. So, we
have been proposed a control method using the trans-
pose of GJM for joint velocity controller without tra-
jectory tracking. In this paper, we propose a track-
ing control method for joint velocity controller. Sim-
ulation results show the effectiveness of the control
method.

2 Tracking Control (Torque input)

Our proposed control method [5] has been designed
for a free-floating space robot manipulator as shown
in Fig. 1 [4]. It has an uncontrolled base and n-DOF
manipulator with revolute joints. The target of the
end-effector of the manipulator is stationary in an in-
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Fig. 1 Space robot model
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ertial coordinate frame. Symbols used in this paper
are defined as follows:

ΣI : inertial coordinate frame
ΣB : base coordinate frame
ΣE : end-effector coordinate frame
ΣT : target coordinate frame
rE : position vector of ΣE

rT : position vector of ΣT

vE : linear velocity vector of ΣE

ωE : angular velocity vector of ΣE

q : joint angle vector
φ∗ : angle vector representing the orientation of

Σ∗
IA∗ : rotation matrix from Σ∗ to ΣI

E : identity matrix
The tilde operator stands for a cross product such that
r̃a = r × a. All position and velocity vectors are
defined with respect to the inertial reference frame.

A discrete-time differential kinematic model of
Fig. 1 is given by the following equation [2, 3]:[

vE(k)
ωE(k)

]
=

[
JL(φB(k), q(k))
JA(φB(k), q(k))

]
q̇(k) (1)

where JL and JA are called the GJMs of the linear
and angular velocities, respectively.

For free-floating space robot manipulators we have
proposed the following control law using the transpose
of the GJM [5]:

τd(k) = JT
L(k)

[
k̂p(k)ePI(k) − K̂LV (k)vE(k)

]
+ JT

A(k)
[
k̂o(k)eOI(k) − K̂AV (k)ωE(k)

]
(2)

where τd(k) is the joint torque input vector and

ePI(k) = pT (k) − pE(k),

eOI(k) = −1
2
ET

X(k)EOI(k),

EOI(k) =

⎡⎣nT (k) − nE(k)
sT (k) − sE(k)
aT (k) − aE(k)

⎤⎦, EX(k) =

⎡⎣ñE(k)
s̃E(k)
ãE(k)

⎤⎦,

k̂p(k) = kp{1 + αLνL(k)}, k̂o(k) = ko{1 + αAνA(k)},
K̂LV (k) = KLV {1 − βLνL(k)},
K̂AV (k) = KAV {1 − βAνA(k)},

νL(k) =
||vEd

(k)||
vdmax

, νA(k) =
||ωEd

(k)||
ωdmax

.

The vectors n∗, s∗ and a∗ (∗ = T, E) are unit vec-
tors along the axes of Σ∗ with respect to ΣI , i. e.,
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Fig. 2 3-link space robot

Table 1 Physical parameters

Length Mass Moment of inertia
m kg kg·m2

Base 3.5 2000 3587.9
Link 1 2.5 50 26.2
Link 2 2.5 50 26.2
Link 3 0.5 5 0.23
Object 4.0 100 200.0

IA∗ = [n∗(k) s∗(k) a∗(k)]. vEd
(k) and ωEd

(k) are the
desired velocities of vE(k) and ωE(k), vdmax and ωdmax

are the maximum values of the norm of vEd
(k) and

ωEd
(k), α† (α† ≥ 0) and β† (0 ≤ β† ≤ 1) († = L, A)

are setting parameters. Furthermore, kp and ko are
positive scalar gains for position and orientation, and
KLV and KAV are symmetric and positive definite
gain matrices for linear and angular velocities of the
end-tip of the manipulator.

For a horizontal planar 3-DOF robot shown in
Fig. 2 and an object, computer simulation using
Eq. (2) has been done [5]. The simulation condition
is follows. Physical parameters of the robot and ob-
ject are shown in Table 1. A point of interest of the
object moves along a straight path from the initial
position to the target position and the object angle
is set up to the initial value. The sampling period
is T = 0.01s and setting parameters of the control
law are kp = ko = 50000, KLV = diag{5000, 5000},
KAV = 5000, αA = αL = 0.8 and βA = βL = 0.3.

Fig. 3 and 4 show the simulation result. And
Fig. 5 shows the relation between the actual joint in-
put torque and joint angular velocity. From Fig. 5 we
can see that the value of angular velocity is varying
with the constant torque input during the sampling
interval T . In other words, if the control inputs vary
roughly for manipulators with joint velocity controllers
the joint controllers give large torques to the robot.
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Fig. 3 Motion of the robot (Torque input)
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Fig. 4 Simulation result (Torque input)
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Fig. 5: Relation between torque and velocity (joint 2)

3 Tracking Control (Velocity input)

For manipulators with joint velocity controllers the
control law (2) cannot be applied directly. To obtain
similar control performance to the case of the joint
torque controllers, we use the dynamic equation of the
robot.

Equation of motion of the space robot shown in
Fig. 1 can be described as follows [1]:

H(q)q̈(t) + C(q, q̇) = τ (t) (3)

where H is the symmetric and positive definite inertia
matrix, and C is the vector of Coliolis and centrifugal
forces.

Discretizing Eq. (3) by the sampling period T1 (T =
nT1, n is positive integer) and applying the forward
Euler approximation to q̈(k1), we have

q̇(k1) = q̇(k1−1)−T1H
−1(k1) {C(k1) − τ (k1)} . (4)

Here, we assume that q is constant during the sam-
pling interval T . Then for Eq. (4) the actual joint
velocity control input q̇d(k1) is determined as

q̇d(k1) = q̇(k1−1)−T1H
−1(k) {C(k1) − τd(k)} . (5)

To verify the validity of the proposed control
law (2), with Eq. (5) simulation is performed. The
condition is same to the torque input case and the
sampling period for Eq. (5) is T1 = 0.001s (n = 10).

The simulation result is shown in Fig. 6 and 7. Fur-
thermore, Fig. 8 shows the difference of the joint an-
gular velocity between the case of torque input con-
trol and velocity input control. From these figures,
the both control performances are similar and good
control performance can be achieved using the control
law (2) with Eq. (5).
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Fig. 6 Motion of the robot (Velocity input)
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Fig. 7 Simulation result (Velocity input)
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Fig. 8 Velocity difference between Fig. 4 and 7

4 Conclusion

In this paper, a digital tracking control method for
space robot manipulators with joint velocity controller
was proposed. The simulation result showed the effec-
tiveness of the proposed method.
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