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Abstract

In this study, we discuss the baseline function for
the estimation of the natural policy gradient with re-
spect to the variance and show a condition that an op-
timal baseline function reducing the variance is equiv-
alent to the state value function. However, the state
value could be much different from the optimal base-
line outside of the condition. For such cases, an ex-
tended version of the NTD algorithm [1] is proposed,
where an auxiliary function is estimated to adjust the
baseline, being state value estimates in the original
version, to the optimal baseline. The proposed algo-
rithm is applied to simple MDP and a challenging pen-
dulum swing-up problem.

Keywords: policy gradient reinforcement learning,
natural gradient, variance reduction.

1 Introduction

Policy gradient (PG) methods for reinforcement
learning (RL) attempt to maximize the average (or dis-
counted cumulative) reward by improving the policy
parameter on the basis of the stochastic gradient de-
cent with the experienced system trajectories of states,
actions, and rewards [2]. Kakade proposed a “nat-

ural policy gradient (NPG)” as an efficient covariant
gradient of the average reward to reduce the effect of
plateau phenomenon [3]. The actor-critic framework
with the NPG is called Natural Actor-Critic (NAC),
i.e. the actor as the policy is updated by the NPG esti-
mated in the critic [4]. In our previous studies [1], the
natural policy gradient utilizing temporal differences
(NTD) algorithm as an implementation of NAC was
proposed, where the NPG is estimated without ma-
trix inversion. While the original NTD algorithm uses
the state value function as the baseline function for
estimating the NPG, it has not been clarified whether
the state value function is a valid baseline function for
reduction of the variance of the estimated gradients.

Here, we discuss the baseline function for the above

question by using the results of Greensmith et al. [5].
We introduce an optimal baseline function that mini-
mizes an upper bound of the variance of the NPG esti-
mates, and see that the optimal function can be differ-
ent from the state value function. We then show the
condition, under which the optimal baseline function
is equivalent to the state value function. Although the
state value function is a valid baseline function under
the condition, the state value could be invalid baseline
function outside of the condition, being much different
from the optimal baseline. For such case, we propose
an “extended NTD algorithm”, which compensates for
the differences between the state value function and
the optimal baseline function by introducing an aux-
iliary function. An algorithm to estimate the auxil-
iary function is also proposed. These proposed algo-
rithms are applied to simple Markov decision problems
to confirm their performances. The extended NTD al-
gorithm is also applied to a more challenging nonlinear
pendulum swing-up problem to show its effectiveness
compared with other PG methods.

2 Background of NTD Algorithm

2.1 Natural policy gradient

While PG is based on gradient decent, one of the
major limitations of standard gradient descent algo-
rithms is that the ordinary gradient of a function does
not necessarily indicate its steepest direction, because
a parameter as an input of the function might not
be expressed in orthonormal coordinates in terms of
change of an output from the function. In order to
overcome this problem, Amari proposed the concept of
natural gradient to define the steepest direction based
on Riemannian geometry [6]. The natural gradient of
an objective function R(θ) with respect to θ is

∇̃θR(θ) = G(θ)−1∇θR(θ), (1)

where G(θ) is a Riemannian metric matrix of θ, which
is defined by the Fisher information matrix (FIM) in
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the case that θ is a parameter of a statistical model,
and ∇θR(θ) is derivative of R(θ) with respect to θ.

While the above work deals with the case that a
training sample was independent and identically dis-
tributed, Kakade extends it to the case of Markov de-
cision process (MDP), which is a model of RL, and
propose the natural policy gradient (NPG) as the nat-
ural gradient of the average reward, being the ob-
ject function, of RL with respect to the policy pa-
rameter. A discrete time MDP with finite sets of
states X 3 x and actions U 3 u is defined by a
state transition probability p(xt+1|xt, ut) and a re-
ward function rt+1 = r(xt+1, xt, ut) at all time steps t

[7, 8]. The decision-making follows a stochastic policy
πθ(u|x) ≡ p(u|x; θ), parameterized by θ ∈ R

d. We
assume that the every policy π is differentiable with θ

for all x∈X and u∈U and makes an ergodic Markov
chain, i.e. the stationary state distribution always ex-
ists dπ(x′) =

∑
x,u p(x′|x, u)πθ(u|x)dπ(x).

In NPG, G(θ) and R(θ) of eq.1 are the time average
of −∇2

θ ln π and the average reward, respectively,

G(θ)= lim
T→∞

−1

T
Eπ

(

T−1
X

t=0

∇2
θ lnπθ(ut|xt)

)

=
X

x

dπ(x)F (x,θ),

R(θ)= lim
T→∞

1

T
Eπ

(

T
X

t=1

rt

)

=
X

x′,x,u

p(x′|x, u)πθ(u|x)dπ(x)r(x′, x, u),

where F (x,θ) ≡ −Eπ
˘

∇2
θ ln πθ(u|x)|x

¯

is the FIM of
π given x with respect to θ. It is noted that G(θ)
is equivalent to the scaled FIM of the system tra-
jectories [9, 4]. An important property of NPG

∇̃θR(θ) is the relationship with the linear function
approximator f

π
ω (x, u) ≡ ω

>∇θ ln πθ(u|x), where ω

is called the weight, for the action value function

Qπ(x, u) ≡ limT→∞ Eπ
n

PT

k=1
γk−1rt+k|xt = x, ut = u

o

with the discounted rate γ ∈ [0, 1), i.e.,1

∇̃θR(θ) ' ω
∗
. (2)

ω
∗ is the parameter minimizing the approximate er-

ror Eπ
˘

(Qπ − fπ
ω )2

¯

[3]. Here, we also notate the state
value function V π(x) ≡ Eπ{Qπ(x, u)|x} and show a fol-
lowing proposition for the policy parameterization:
Proposition 1 Let X and Ui denote the number of
states and available actions at state xi, respectively.
Let Ψ(θ) denote the subspace spanned by ∇θln πθ(u|x)
over states and actions. If the rank of Ψ(θ) is equal
to (or greater than)

PX

i=1
(Ui − 1), the policy parame-

terization is nondegenerate for the task:

fπ
ω∗(x, u) ≡ w

∗>∇θ lnπθ(u|x) = Qπ(x, u) − V (x)π. (3)

Proof sketch: It comes from the fact that there is a
constraint

P

u
Qπ(x,u) − V π(x) = 0 for each state.

1“'” in eq.2 is replaced “=”, in the limit γ → ∞, using an
undiscounted value function instead of Qπ , or using a discounted
average reward instead of R(θ) [3, 9, 4].

2.2 NAC and NTD algorithm

The actor-critic framework for NPG is called the
natural actor-critic (NAC) [4]. The critic estimates
NPG ω̂ and the actor executes the action drawn from
the policy πθ(u|x), which is updated by the critic’s
estimate: θ := θ + αω̂, where “:=” denotes the sub-
stitution of the right to the left and α is learning rate.

NTD algorithm in our previous work [1] is an im-
plementation of NAC without matrix inversion, com-
prising the repetition of following three procedures.
The first procedure updates the state value estimate
V̂ (x) by TD(λ) learning [8]. The second updates the
NPG estimate ω̂ through the regression with the linear
function fπ

ω̂ (xt, ut) = ω̂
>∇θ ln πθ(ut|xt) to the tempo-

ral difference (TD) given from the first,

δ(xt, ut) = rt+1 + γV̂ π(xt+1) − V̂ π(xt).

That is, the update direction of NPG estimate ω̂ is 2

∆ω̂ =
1

T

T−1
X

t=0

(δ(xt, ut) − fπ
ω̂ (xt, ut))∇θln πθ(ut|xt). (4)

The third updates the policy parameter θ is updated
by the weight ω̂ of fπ

ω̂ in the second.
Since fπ

ω (x, u) has the property for an arbitrary
function a(x), due to

∑
u ∇π = 0,

Eπ{a(x)∇θ ln π(u|x)|x} = 0,

the expectation of ∆ω̂ at a time-step t (eq.4) does
not depend on the value of V̂ (xt). Therefore, the NTD
algorithm uses the state value estimate at the current
time-step as the baseline function b(x) for estimating
the NPG. However it has not been clarified whether
the state value function is a valid baseline function for
the variance reduction of ω̂.

3 Variance Reduction for Natural Pol-

icy Gradient Estimates

3.1 Optimal baseline function b∗(x, ω̂)

Consider a trace of the covariance matrix of the
NPG estimates ŵ as the variance of ω̂, 3

Varπ(ω̂) = Eπ
{
(ω̂ − ω̂

∗)
2

}
,

where a
2 denotes a

>
a for an arbitrary vector a, and

ω̂
∗ ≡ Eπ{ω̂} has to be equal to w

∗ for the unbiased
regression. In gradient decent regressions, however, it
is difficult to treat directly with the variance of ŵ.
Instead we consider Varπ(∆ŵ), the variance of the

2While the NTD algorithm uses the eligibility trace in this
procedure, here is the decay rate λ = 0. We omit the cases of
arbitrary λ ∈ [0, γ], though results in this report are applicable.

3Peters et.al.[10] consider
˙

(ŵ − 〈ŵ〉)>G(θ)(ŵ − 〈ŵ〉)
¸

tak-
ing account of the metric of the policy parameters as a proper
variance about ŵ, instead of Varπ(ŵ). These results of this sec-
tion can be applied instantly to the case of the above variance.
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update direction ∆ŵ for ŵ (at a fixed policy θ). Al-
though a sequence of samples [x1, ..., xT ] is not drawn
independently in almost cases of RL, where the rela-
tionship Varπ( 1

T

∑
t f(xt)) = 1

T
Varπ(f(x)) does not

hold due to correlation between the different time-
step samples, Greensmith et.al.[5] derive useful results
about the variance at a finite ergodic Markov chain.
By applying Corollary 5 and Lemma 6 with the in-
creasing function hπ in [5], the following inequality
holds

Varπ(∆ŵ) ≤ o+ (5)

hπ

„

1

T
Varπ

“

`

Q̂(x, u) − b(x) − fπ
ω̂ (x, u)

´

∇θln πθ(u|x)
”

«

,

where o is independent with the choice of b(x), and

Q̂(xt, ut) = Eπ
n

rt+1 + γV̂ (xt+1)|xt, ut

o

and b(x) = V̂ (x).

Because we are interested in the choice of the base-
line function as b(x) = V̂ (x), the following looks for the
optimal baseline function b

∗(x, ω̂) that minimizes the
upper bound of Varπ(∆ŵ) with respect to b(x) and also
minimizes the part of the argument of the function hπ,

σ2
∆ŵ(b(x)) ≡ Varπ

“

`

Q̂(x, u) − b(x) − fπ
ω̂ (x, u)

´

∇θln πθ(u|x)
”

= Eπ



“

(Q̂(x, u) − b(x) − fπ
ω̂ (x, u))∇θ ln πθ(u|x) − Eπ{∆ŵ}

”2
ff

.

Accordingly, since the optimal baseline b∗(x, ω̂) holds

∂σ2

∆ŵ(b(x))

∂b(x)

∣∣∣∣
b(x)=b∗(x,ω̂)

= 0,
∀
x ∈ X,

it is derived as

b
∗(x, ŵ) =

Eπ
{
∇θln πθ(u|x)2(Q̂(x, u) − fπ

ω̂ (x, u))|x
}

Eπ{∇θln πθ(u|x)2|x}
.

(6)
Note that b∗ has arguments not only x but also ω̂ due
to fπ

ω̂ (x, u) = ω̂
>∇θ lnπθ(u|x).

3.2 Consistency of V π(x) and b∗(x, ω̂)
Proposition 2 If the condition of proposition 1 is

satisfied,
b
∗(x, ω̂

∗) = V̂ (x).

Proof sketch: It is obvious by substituting eq.3,
“Q̂(x, u) − fπ

ω̂∗(x, u) = V̂ (x)”, to eq.6. �
Proposition 2 means that the optimal baseline is equiv-
alent to the sate value, if following two conditions are
satisfied; (i) the policy parameterization is nondegen-
erate for the task and (ii) the NPG estimate converges
to the exact NPG.

In the NTD algorithm, the condition (ii), ω̂ ' ω̂
∗,

should be realized under appropriate updatings on
both the policy parameter as the actor parameter and
the NPG estimate in the critic parameter. It indicates
that the state value function would not be different
from the optimal baseline function so much in cases
using “appropriate” policy parameterization. There-
fore, the state value function could be a valid baseline
function in such cases.

4 Extended NTD algorithm

In this section, we deal with the cases where the
condition (i) and/or (ii) could be violated. In these
cases, the state value function can be much different
from the optimal baseline function. Therefore, we pro-
pose an extended NTD algorithm, which compensates
for the differences between the state value function
and the optimal baseline function by introducing an
auxiliary function,

B(x, ω̂) =
Eπ

n

∇θln πθ(u|x)2(Q̂(x, u) − V̂ (x) − fπ
ω̂ (x, u))|x

o

Eπ{∇θln πθ(u|x)2|x}
.

The extended NTD algorithm is the same as the orig-
inal one, except that the auxiliary function is sub-
tracted from TD as the regressand for the NPG es-
timation,

δ(xt, ut) − B(xt, ω̂) = rt+1 + γV (xt+1) − b∗(xt, ω̂). (7)

Although eq.7 seems roundabout to apply the optimal
baseline, it is useful for an eligibility trace technique
with estimated value functions (see fig.1). In order to
estimate B(x, ŵ), the gradient of σ2

∆ŵ(b(x) = V π(x) +

B̂b(x, ŵ)) with respect to the parameter b of B̂b(x) is
used. Fig.1 is one of the complete algorithms.

Input:

• Initial parameters; θ, ω, v, [ b ] are the parameters of

π(u|x), fπ
ω (x, u)=ω>∇θ ln πθ(u|x), V̂ (x), [ B̂(x) ].

• Metaparameters; γ is the discouted rate of the value function,
αθ , αω , αv , [ αb ] are the learning rates of θ, ω, v, [ b ].
λω , λv ,[ λb ] are the eligibility decay rates of ω, v, [ b ].
β is the forgetting rate of ω.

For t = 0, 1, 2 · · · do

a. Sampling

Execute action ut, observe next state xt+1 and reward
rt+1, and decide next action ut+1 ∼ π(ut+1|xt+1).

b. Critic update

◦ Forget TD estimator parameter
ω := βω;

◦ Compute TD-errors

δv := rt+1 + γV̂ (xt+1) − V̂ (xt)
δω := δv − fπ

ω (xt, ut);

[ δb := δω − B̂(xt, ω) + γλbB̂(xt+1,ω); ]
◦ Update critic eligibilities

zv := γλvzv + ∇vV̂ (xt);
zω := γλωzω + ∇θ ln πθ(ut|xt);

[ zb := γλbzb + ∇θ ln πθ(ut|xt)2∇bB̂(xt,ω); ]
◦ Update value function parameter[s]

v := v + αvδvzv ;
[ b := b + αbδbzb; ]

◦ Update NPG estimator parameter
ω := ω + αωδωzω ;

c. Actor update

θ := θ + αθω;

Figure 1: The [extended] NTD algorithm; The normal
NTD algorithm is specified by skipping the contents in
the square brackets. In the case of the extended NTD
algorithm, the square bracket symbols are ignored.
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5 Numerical Experiments

5.1 MDP with inadequate policy

The 3-state 2-action MDP is modified from Baxter
et.al.[11] at the points of a state-transition probability
and a parameterization of policy. We omit the detail
task setting because of space limitations. Under this
policy parameterization, the condition of proposition 1
can not be satisfied. Thus, even when ω̂ is equal to the
exact NPG, the state value could not be the optimal
baseline function by proposition 2. Fig.2 indicates that
the extended NTD suppresses the variance of the NPG
estimates than the normal NTD.

(a) (b)
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Figure 2: MDP; phase plane analyses; policy parameter
trajectories (a) the extended NTD, (b) the normal NTD.

5.2 Pendulum swing-up problem

This section gives the comparison between NTD al-
gorithms and other policy gradient methods; NAC[4],
Kimura Actor-Critic[12] in the same setting as [1].

The auxiliary function B(x, ω̂) in the extended
NTD is decomposed to two terms; B(x, ω̂) = b1(x) −
b2(x, ω̂), where

b1(x) =
Eπ{∇θln πθ(u|x)2(Q̂(x, u) − V̂ (x))}

Eπ{∇θ ln πθ(u|x)2}
,

b2(x, ω̂) = Eπ{∇θln πθ(u|x)2fπ
ω̂ (x, u)}/Eπ{∇θln πθ(u|x)2}.

When we use the Gaussian distribution policy [1],
while b1(x) has to be estimated, b2(x, ω̂) could be
solved analytically: bµ(x)≡∇θµθ(x), bσ(x)≡∇θσθ(x),

b2(x, ω̂) =
(2b

>
µ bµb

>
σ + 4b

>
µ bσb

>
µ + 8b

>
σ bσb

>
σ )ω̂

σb>µ bµ + 2σb>σ bσ

.

Fig.3 showed that the extended NTD algorithm works
better than the other PG algorithms.

6 Summary

This paper presented that the state value function
could become a valid baseline function with an ap-
propriate policy parameterization for a task. For the
case where the state value function diverges from the
optimal baseline function, the extended version of the
NTD algorithm was proposed, which compensates for

(a) (b)
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Figure 3: Swing-up pendulum problem; (a) The policy is a
three-layer neural network with 10 hidden units. (b) The
average rewards over 30 independent runs. Comparison
among PGs under the improper RBF setup, [5× 5], for the
state value estimation. Extended NTD* is the alternative
algorithm computing b1 analytically.

the differences between the state value and the op-
timal baseline by introducing the auxiliary function.
Additional theoretical and experimental analyses are
necessary to further understand the properties and the
effectiveness of the NTD algorithm.
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