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Abstract of the policy gradient with estimation of the variance in an

In reinforcement learning (RL), many samples are necé’§‘-”ne manner. If we draw samples Whi_ch efficiently re_duce
sary in every policy improvement, which requires the robgle estimation variance, the policy gradient can be estimated
actually to act many times and hence may make the robot* ed on afewer numlber of samples than that In _the conven-
broken down. One cause of the necessity of many samg|@g@! passively sampling RL methods; then, efficient policy
in the RL is that the agent must passively produce sampi@®rovement can be done. . ,
according to it's current policy. Therefore, efficient sampling An @pplication of the nonparametric Bayesian approach
methods such as active sampling are desired. In this artigléCh as Gaussian processes (GPs) to the RL is rather straight-
we propose a novel RL method with active sampling bastward for this end, because the posterior distribution of ar-

on Gaussian process, which reduces samples necessarf!fe#y function can be estimated without any prior knowl-
policy convergence. edge. Recently, a policy gradient RL method which is called

“Bayesian Policy Gradient Algorithm (BPG)” was proposed
[1]. In this method, the GP is combined with the conven-
tional policy gradient methods and the estimation variance of
the policy gradient is derived. However, there is no study of

Reinf tl . RL) | hine | ina t he active sampling by using such an estimation variance as a
einforcement learning (RL) is a machine learning tec ampling criterion.

nigue which seeks good policy through interactions with en- I this article, we propose a novel RL method with active

vironments, and has been applied to various control problems. i ing th L ' i .
Recently, policy gradient RL methods have been proposed‘c’.‘?lnmp Ing using t e.estlmatlo'n varlance as a sampiing crite-
' tion, called “Off-Policy Bayesian Policy Gradient Algorithm

which the gradient of the cumulative rewards with respectQﬁ_BPG),,. In our proposal method, an active sampling is

a the parameter of the policy (policy gradient) is estimat erformed toward reducing the estimation variance in an on-

from samples and the policy is improved by using the gradfi- . . . .
. : Ine manner, instead of the conventional passive sampling.

ent [7]. In this method, the convergence of the policy param- .
. . hen, the policy improvements can be faster and may be more

eter is guaranteed and more robust learning can be expected S )
. ausible to applications to real-world problems with scarce

than the conventional RL methods do through many expgr- . . .
Samples. Computer experiments show that the policy gradi-

|men.tal studies. In the RL algorithms including the pO“CXnI could be estimated efficiently with fewer sampling times
gradient methods, however, many samples are necessary In

every policy improvement, which requires the robot actual ))’ our method rather than by the previous BPG.
to act many times and hence may make the robot be broken

down. This is a main drawback of the RL algorithms in manﬁ/ ) . )
real-world applications. MDPs and Policy Gradient algorithm

One cause of the necessity of many samples is that the
agent must passively produce samples according to it's cur\We consider discrete-time and continuous-state Markov
rent policy. The passive sampling needs many samplesdecision processes (MDPs). Let the state and the action be
achieving successful learning, because less efficient samplesnda; at timet, respectively. The agent selects the action
are produced frequently. Therefore, efficient sampling meth-from the probabilistic policy (a:|s:; @), prescribed by the
ods such as active sampling are desired. parameted, at the state;, and moves to the next statg, ;

One possible choice in this direction can be provided lagcording to the state transtion distributipfis; 1 |s¢, a;),
Bayesian approaches, where the estimation variance of dhd recieves a rewarct,;. We define the sample trajec-
policy gradient or the value function can be estimated fraiory generated by this Markov chain as a single path by
samples. Then, we can know which samples reduce variamce- (so, ag, $1,01, - ,S7—-1,ar—1,S7). The distribution

1 Introduction
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of generating such a path is given by the posterior mean and the posterior covariance as
rt E¢(f(2)[Dyr) = kpy(2)Crryu,s )
p(w;6) = polso) [T (arlse; O)p(sesalse, ar). Covs (f(x), f(@)|Dar)
t=0

= k(z,2') — kj;(2)Crkr ('), (2)

The cumulative reward of the pathis defined ask(z) = respectively, wher€T) is the transpose, and

' *riy, where € [0,1) is a discount factor. The
expected value af(x) for a given pathe is defined as?(x). ky(z) = (k(z1,2),...,k(zr,x) ",
Then, the expected return of cumulative reward under policy yu = Wiy
is given by Cu = (K +0°0)!
0O) =n( (1:6) = [ R)pla:0)d. o B k]
" ki [ k)

In the policy gradient methods, the derivative of the expectelg| th tork denotes he similarity bet
return with respect to the policy parametérgpolicy gradi- ere, the vectorky(x) denotes he similarity between

ent) is estimated, and then the policy is improved by updatimge next mpu:hvarlalt)llivKan(; thet cutLrent_ |r.1|pu_§ \E)ar;ables
the parameters in the direction of the gradient. The poli¢y!’ """ » 21 }, the matrixK'ys denotes the similarity between

gradient is calculated as the current input variables? is noise variance of the outputs,
which is set in advance, arfdis the identity matrix.

Then, we can estimate the posterior variance
V(o) = /R(x)Vlogp(a:;O)p(x;O)dz Var (f(z)|Dar)=Covs(f(z), f(z)|Dar)  corresponding
T_1 to the next input variable:, which signifies which input:
— /R(x) Z Viog (ai|se;0)p(x;0)dr. can largely reduce the variance. The posterior mean (Eq.(1))
=0 and the posterior variance Vdif(x)| D) are depicted in

Fig.1 (a). After sampling to reduce the posterior variance, the
posterior distribution comes to be sharp, and more accurate
3 Active Sampling based on Gaussian Processposterior mean can be obtained, depicted in Fig.1 (b).
Therefore, we can estimate the target functidm) by active
Although the policy gradient methods perform robustimpling based on the GP to reduce the variance largely.
learning in many experimental studies, many samples are nec-
essary due to large variance of the gradient estimation. Some
efficient sampling methods such as active sampling are de-
sired for variance reduction and hence fast learning. In this
section, we introduce two types of variance reduction tech-
niques based on the GP. The GP [3] is a non-parametric
Bayesian technique for modeling real-world statistical prob-
lems without explicit representations of the basis functions.
Then, the GP would be promising in the RL field, because the
basis function construction in the RL is often very difficult.

Figure 1. The posterior variance is largely reduced by ac-

tive sampling. The target function of this problemfigr) =
4 2

According to GP, we can estimate the posterior diS'[ribxhlﬁ — 2. Athick line denotes the posterior mean. A thin

. . . . . .. line denotes the true function. A dash line denotes the poste-
tion of an arbitrary function by setting a Gaussian distributign . : '
riqr variance. Each circle denotes a sample. Note that in (b),

as a prior of the target function, and observing a number o ; . .
: ) the posterior mean fits the true function more accurately than
data from the function. We set the prior mean and the prigr

variance of the functiorf (z) to 0 andk(z, =), respectively, aj[ In (2), due to the sampling ofas to reduce the posterior
N . ; ,”' variance.

where:(x, 2') is a kernel function whose inputs areandz’,

which represents the similarity betweerandz’. We also

observe a set of samplés, = {(x;,y:)}1L,, wherez; and 3.2 Active sampling for ExpectationE,[f(z)]

y; are values of an input and an output of that function, re-

spectively, andV/ is the number of samples. Then, the pos- If we wish to estimate the expectation ffx) with respect

terior distribution is expressed by Gaussian distribution with z: E,[f(z)] = [ f(z)p(z)dz, the above active sampling

3.1 Active Sampling for function f(z)
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method cannot directly be used. In this case, the Bayesthn Off-Policy Bayesian Policy Gradient

Quadrature (BQ) [9], which is an integral calculus with the

GP, can be used for estimating this expectation and its variye apply the active sampling method above to the pol-
ance. In the BQ, the posterior mean and the posterior Vat; 4radient RL method. Recently, Bayesian policy gradient
ance of the expectation, which we call the BQ mean and Tﬁ!ﬁorithm (BPG), employing on the GP, has been proposed

BQ variance, respetively, are given by by Ghavamzadeh and Engel [1]. In this method, the policy
gradient was estimated based on the GP and the BQ. Then,

E(p|Dnr) = /E(f(r)lDM)p(x)dx, 3 we can apply the active sampling method based on the BQ,

Var (p|Das) proposed in section 3.2, to the BPG. This algorithm is called

“Off-policy Bayesian policy gradient algorithm (Off-BPG)".

= / Cov(f(z), f(z")|Dar)p(x)p(a’)dzdz’, (4) Inour Off-BPG and the BPG algorithms, the BQ mean and
the BQ covariance of the policy gradieYit)(0) are given by
wherep = E,[f(z)]. [1]:
Because the new input variahleis marginalized out, we

samplex; shown in Egs. (1) and (2) to reduce the BQ vari-  £(vy(6)|Dy,) = /E(f(:c; 6)|Dar)p(z; 0)dz,

ance (Eq.(4)). This is another active sampling scheme, which

is applied to the BPG in the next section. The effectiveness of Cov(V7(8)|Dy)

this method is depicted in Fig.2, and the algorithm is depicted

in Algorithm 1, where samples are obtained by the steepest™ / Cov(f(w;6), f(a"; 6)|Dar)p(; O)p(a’; 6)dxda’,

descent of the BQ variance.

respectively, which are derived by replacing Egs. (3) and

(4) with V1(6). Since the BQ covariance is isotropic [1], we

. q, ° define the BQ variance of the policy gradient ¥&£0)| Dy, )
) At 08 B as a diagonal element of CGV7(8)|Dy;). Therefore, we
4° o Samples 3 can draw samples efficiently by using V&t (0)|D,;). This
R — ° """"""" algorithm is depicted in Algorithm 2.
d 11 """"""" CoAs s (ii)) 0s b o182 Algorithm 2: Off-Policy Bayesian Policy Gradient
j notsmall  giest 7o ° 1: input parameterized policy(-|-; 8y), learning rate
1 2: for j=1:K ***policy improvement***
R N for i=1:L ***policy evaluation***
(@) oo 3 D7:A|gor|thm 1(D1'_17 (|7 0]‘_1)1)
o (i) ot 4: Executer; ; and gety;
D; —Di—1 +{xi—1,yi—1}
5: ComputeE(Vn(0;-1)|D;)

Figure 2: The BQ variance is largely reduced by active sam- end for

pling, wherep = [(z* — 2?)p(z)dz andp(z) = N(0,1). : 0; =01+ E(Vn(8;-1)D:)

Black straight and dash lines denote the BQ mean and the Bz? ?nd for ) )

variance, respectively. Each circle denotes a sample. The ob- '™ BPG, we can get without knowingp(x)

jective is to getp = 2 in all z. (a) shows the BQ mean and by using the Fisher kernel technique.

the BQ variance in the presence of two samples. (b) showe collect sample paths whose V&ip(0)|D,,) is small, by

that we can estimate more accurate with drawing a samplesing a steepest descent method, and then, the policy gradient
whose BQ variance is small in (a). (c) shows the situationisfupdated.

drawing a sample whose BQ variance is not small, then the

estimation ofp is not more accurate than that in (b).

Algorithm 1: Active Sampling based on BQ 5 Experimental Results

1: input Dy, p(z), learning rate

2: forh=1toN ***steepest descent method*** In this section, we compare our off-BPG with the BPG

3: ComputeV ,Var(p|Dys) usingzy, [1] by using a simple bandit problem. First, we evaluate the
4: The1 = xp — VVar(p|Das) variance reduction performance of our method in the policy
5: end for evaluation step. Second, we evaluate the convergence of the
6. return z policy of our method in the policy improvement step.
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5.1 A simple bandit problem which is the standard derivation of the policy, was updated
to an incorrect direction by 5 sample size in the BPG, while

In a simple bandit problem, the pathis equivalent to an Off-BPG worked toward a correct direction. This is because

action, i.e.z = a. So, the policy is reduced tq(a|s) = p(x). the policy gradient could not be estimated by that sample size

In this setting, we define the policy as Gaussian distributigrgssibly.

where the mean and the variance are 0 and 3, respectively,

namely,p(z) = N(0,3). In a usual passive sampling RL s }..

setting, when the agent selects an actiofrom the policy

p(x), an immediate reward(x) is obtained. The reward is

setas () = —(z — 3)2. On the other hand, we consider the

u
-

—— Off-BPG:Ssamples
= Off-BPG: 10 samples
- === BPG:5 samples

tance of Ang

B e e

3
2]
°

Policy Parameter

active sampling based on Algorithms 1 and 2, where sampl *r+ BPG:I0 samples i
are generated by our active sampling scheme.
"-....__._ 0
5.2 The performance comparsion in the policy eval- ® Numberof Updates” Nurber o Updtes”
uation step €Y (b)

We compare our Off-BPG with the BPG in the policy eva
uation step. The true gradient is given h{f) = [ —(a —
3)2V log p(x)p(x)dr = [6,—6]T. Fig.3 shows the perfor-
mance comparison, averaged over 100 learning runs. FiI
(a) shows that Off-BPG could estimate the policy gradiemy'
more efficiently than the BPG, and Fig.3 (b) shows that the
variance of Off-BPG decreased faster than the BPG.

'lfigure 4: (a) Euclidian distance between the optimal and the
estimated policy parameters. (b) Learning behavior of the
oJé,icy parameter, which is the standard derivation of the pol-

6 Conclusion and Future Work

3
N

— Off-BPG

Bra In this study, we proposed a reinforcement learning algo-
rithm with active sampling based on Gaussian process (GP),
called “Off-BPG”. Our algorithm used the estimation vari-
ance of the policy gradient to explore the most efficient sam-
ples. Computer experiments showed that our algorithm could

si0 f5 0 25 ¥ 4o 1o f5 20 %5 4035 o drastically reduce variance and realize fast convergence of the
policy. However, the applicability has so far been shown in a
@) (b) simple bandi . o
ple bandit problem. Then, we will extend the applicability
of our Off-BPG to more realistic problems as a future work.
Figure 3: The performance comparison in the policy evalua-
tion step.
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