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Abstract

In reinforcement learning (RL), many samples are neces-
sary in every policy improvement, which requires the robot
actually to act many times and hence may make the robot be
broken down. One cause of the necessity of many samples
in the RL is that the agent must passively produce samples
according to it’s current policy. Therefore, efficient sampling
methods such as active sampling are desired. In this article,
we propose a novel RL method with active sampling based
on Gaussian process, which reduces samples necessary for
policy convergence.

1 Introduction

Reinforcement learning (RL) is a machine learning tech-
nique which seeks good policy through interactions with en-
vironments, and has been applied to various control problems.
Recently, policy gradient RL methods have been proposed, in
which the gradient of the cumulative rewards with respect to
a the parameter of the policy (policy gradient) is estimated
from samples and the policy is improved by using the gradi-
ent [7]. In this method, the convergence of the policy param-
eter is guaranteed and more robust learning can be expected
than the conventional RL methods do through many exper-
imental studies. In the RL algorithms including the policy
gradient methods, however, many samples are necessary in
every policy improvement, which requires the robot actually
to act many times and hence may make the robot be broken
down. This is a main drawback of the RL algorithms in many
real-world applications.

One cause of the necessity of many samples is that the
agent must passively produce samples according to it’s cur-
rent policy. The passive sampling needs many samples for
achieving successful learning, because less efficient samples
are produced frequently. Therefore, efficient sampling meth-
ods such as active sampling are desired.

One possible choice in this direction can be provided by
Bayesian approaches, where the estimation variance of the
policy gradient or the value function can be estimated from
samples. Then, we can know which samples reduce variance

of the policy gradient with estimation of the variance in an
online manner. If we draw samples which efficiently reduce
the estimation variance, the policy gradient can be estimated
based on a fewer number of samples than that in the conven-
tional passively sampling RL methods; then, efficient policy
improvement can be done.

An application of the nonparametric Bayesian approach
such as Gaussian processes (GPs) to the RL is rather straight-
forward for this end, because the posterior distribution of ar-
bitrary function can be estimated without any prior knowl-
edge. Recently, a policy gradient RL method which is called
“Bayesian Policy Gradient Algorithm (BPG)” was proposed
[1]. In this method, the GP is combined with the conven-
tional policy gradient methods and the estimation variance of
the policy gradient is derived. However, there is no study of
the active sampling by using such an estimation variance as a
sampling criterion.

In this article, we propose a novel RL method with active
sampling using the estimation variance as a sampling crite-
rion, called “Off-Policy Bayesian Policy Gradient Algorithm
(Off-BPG)”. In our proposal method, an active sampling is
performed toward reducing the estimation variance in an on-
line manner, instead of the conventional passive sampling.
Then, the policy improvements can be faster and may be more
plausible to applications to real-world problems with scarce
samples. Computer experiments show that the policy gradi-
ent could be estimated efficiently with fewer sampling times
by our method rather than by the previous BPG.

2 MDPs and Policy Gradient algorithm

We consider discrete-time and continuous-state Markov
decision processes (MDPs). Let the state and the action be
st andat at timet, respectively. The agent selects the action
at from the probabilistic policyµ(at|st; θ), prescribed by the
parameterθ, at the statest, and moves to the next statest+1

according to the state transtion distributionp(st+1|st, at),
and recieves a rewardrt+1. We define the sample trajec-
tory generated by this Markov chain as a single path by
x = (s0, a0, s1, a1, · · · , sT−1, aT−1, sT ). The distribution
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of generating such a path is given by

p(x; θ) = p0(s0)
T−1∏
t=0

µ(at|st; θ)p(st+1|st, at).

The cumulative reward of the pathx is defined asR(x) =∑T−1
t=0 γtrt+1, whereγ ∈ [0, 1) is a discount factor. The

expected value ofR(x) for a given pathx is defined as̄R(x).
Then, the expected return of cumulative reward under policy
µ is given by

η(θ) = η(µ(·|·; θ)) =
∫

R̄(x)p(x; θ)dx.

In the policy gradient methods, the derivative of the expected
return with respect to the policy parametersθ (policy gradi-
ent) is estimated, and then the policy is improved by updating
the parameters in the direction of the gradient. The policy
gradient is calculated as

∇η(θ) =
∫

R̄(x)∇ log p(x; θ)p(x; θ)dx

=
∫

R̄(x)
T−1∑
t=0

∇ log µ(at|st;θ)p(x; θ)dx.

3 Active Sampling based on Gaussian Process

Although the policy gradient methods perform robust
learning in many experimental studies, many samples are nec-
essary due to large variance of the gradient estimation. Some
efficient sampling methods such as active sampling are de-
sired for variance reduction and hence fast learning. In this
section, we introduce two types of variance reduction tech-
niques based on the GP. The GP [3] is a non-parametric
Bayesian technique for modeling real-world statistical prob-
lems without explicit representations of the basis functions.
Then, the GP would be promising in the RL field, because the
basis function construction in the RL is often very difficult.

3.1 Active Sampling for function f(x)

According to GP, we can estimate the posterior distribu-
tion of an arbitrary function by setting a Gaussian distribution
as a prior of the target function, and observing a number of
data from the function. We set the prior mean and the prior
variance of the functionf(x) to 0 andk(x, x′), respectively,
wherek(x, x′) is a kernel function whose inputs arex andx′,
which represents the similarity betweenx andx′. We also
observe a set of samplesDM = {(xi, yi)}M

i=1, wherexi and
yi are values of an input and an output of that function, re-
spectively, andM is the number of samples. Then, the pos-
terior distribution is expressed by Gaussian distribution with

the posterior mean and the posterior covariance as

Ef (f(x)|DM ) = k>
M (x)CMyM , (1)

Covf (f(x), f(x′)|DM )
= k(x, x′) − k>

M (x)CMkM (x′), (2)

respectively, where(>) is the transpose, and

kM (x) = (k(x1, x), . . . , k(xM , x))>,

yM = (y1, . . . , yM )>,

CM = (KM + σ2I)−1,

KM+1 =

[
KM kM

k>
M k(x, x)

]
.

Here, the vectorkM (x) denotes he similarity between
the next input variablex and the current input variables
{x1, . . . , xM}, the matrixKM denotes the similarity between
the current input variables,σ2 is noise variance of the outputs,
which is set in advance, andI is the identity matrix.

Then, we can estimate the posterior variance
Varf (f(x)|DM )≡Covf (f(x), f(x)|DM ) corresponding
to the next input variablex, which signifies which inputx
can largely reduce the variance. The posterior mean (Eq.(1))
and the posterior variance Varf (f(x)|DM ) are depicted in
Fig.1 (a). After sampling to reduce the posterior variance, the
posterior distribution comes to be sharp, and more accurate
posterior mean can be obtained, depicted in Fig.1 (b).
Therefore, we can estimate the target functionf(x) by active
sampling based on the GP to reduce the variance largely.
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Figure 1: The posterior variance is largely reduced by ac-
tive sampling. The target function of this problem isf(x) =
x4 − x2. A thick line denotes the posterior mean. A thin
line denotes the true function. A dash line denotes the poste-
rior variance. Each circle denotes a sample. Note that in (b),
the posterior mean fits the true function more accurately than
that in (a), due to the sampling ofx as to reduce the posterior
variance.

3.2 Active sampling for ExpectationEx[f(x)]

If we wish to estimate the expectation off(x) with respect
to x: Ex[f(x)] =

∫
f(x)p(x)dx, the above active sampling
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method cannot directly be used. In this case, the Bayesian
Quadrature (BQ) [9], which is an integral calculus with the
GP, can be used for estimating this expectation and its vari-
ance. In the BQ, the posterior mean and the posterior vari-
ance of the expectation, which we call the BQ mean and the
BQ variance, respetively, are given by

Ef (ρ|DM ) =
∫

E(f(x)|DM )p(x)dx, (3)

Varf (ρ|DM )

=
∫∫

Cov(f(x), f(x′)|DM )p(x)p(x′)dxdx′, (4)

whereρ = Ex[f(x)].
Because the new input variablex is marginalized out, we

samplexM shown in Eqs. (1) and (2) to reduce the BQ vari-
ance (Eq.(4)). This is another active sampling scheme, which
is applied to the BPG in the next section. The effectiveness of
this method is depicted in Fig.2, and the algorithm is depicted
in Algorithm 1, where samples are obtained by the steepest
descent of the BQ variance.
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Figure 2: The BQ variance is largely reduced by active sam-
pling, whereρ =

∫
(x4 − x2)p(x)dx andp(x) = N (0, 1).

Black straight and dash lines denote the BQ mean and the BQ
variance, respectively. Each circle denotes a sample. The ob-
jective is to getρ = 2 in all x. (a) shows the BQ mean and
the BQ variance in the presence of two samples. (b) shows
that we can estimateρ more accurate with drawing a sample
whose BQ variance is small in (a). (c) shows the situation of
drawing a sample whose BQ variance is not small, then the
estimation ofρ is not more accurate than that in (b).

Algorithm 1: Active Sampling based on BQ
1: input DM , p(x), learning rateα
2: for h=1 to N ***steepest descent method***
3: Compute∇xVar(ρ|DM ) usingxh

4: xh+1 = xh − α∇xVar(ρ|DM )
5: end for
6: return x

4 Off-Policy Bayesian Policy Gradient

We apply the active sampling method above to the pol-
icy gradient RL method. Recently, Bayesian policy gradient
algorithm (BPG), employing on the GP, has been proposed
by Ghavamzadeh and Engel [1]. In this method, the policy
gradient was estimated based on the GP and the BQ. Then,
we can apply the active sampling method based on the BQ,
proposed in section 3.2, to the BPG. This algorithm is called
“Off-policy Bayesian policy gradient algorithm (Off-BPG)”.
In our Off-BPG and the BPG algorithms, the BQ mean and
the BQ covariance of the policy gradient∇η(θ) are given by
[1]:

E(∇η(θ)|DM ) =
∫

E(f(x; θ)|DM )p(x;θ)dx,

Cov(∇η(θ)|DM )

=
∫∫

Cov(f(x; θ), f(x′;θ)|DM )p(x;θ)p(x′; θ)dxdx′,

respectively, which are derived by replacingρ in Eqs. (3) and
(4) with ∇η(θ). Since the BQ covariance is isotropic [1], we
define the BQ variance of the policy gradient Var(∇(θ)|DM )
as a diagonal element of Cov(∇η(θ)|DM ). Therefore, we
can draw samples efficiently by using Var(∇η(θ)|DM ). This
algorithm is depicted in Algorithm 2.

Algorithm 2: Off-Policy Bayesian Policy Gradient
1: input parameterized policyµ(·|·; θ0), learning rateβ
2: for j=1:K ***policy improvement***

for i=1:L ***policy evaluation***
3: Di=Algorithm 1(Di−1, µ(·|·; θj−1)1)
4: Executexi−1 and getyi−1

Di ←Di−1 + {xi−1, yi−1}
5: ComputeE(∇η(θj−1)|Di)

end for
6: θj = θj−1 + βE(∇η(θj−1)|Di)
7: end for

1In BPG, we can getx without knowingp(x)

by using the Fisher kernel technique.

We collect sample paths whose Var(∇ρ(θ)|DM ) is small, by
using a steepest descent method, and then, the policy gradient
is updated.

5 Experimental Results

In this section, we compare our off-BPG with the BPG
[1] by using a simple bandit problem. First, we evaluate the
variance reduction performance of our method in the policy
evaluation step. Second, we evaluate the convergence of the
policy of our method in the policy improvement step.
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5.1 A simple bandit problem

In a simple bandit problem, the pathx is equivalent to an
action, i.e.,x = a. So, the policy is reduced toµ(a|s) = p(x).
In this setting, we define the policy as Gaussian distribution,
where the mean and the variance are 0 and 3, respectively,
namely,p(x) ≡ N (0, 3). In a usual passive sampling RL
setting, when the agent selects an actionx from the policy
p(x), an immediate rewardr(x) is obtained. The reward is
set asr(x) = −(x − 3)2. On the other hand, we consider the
active sampling based on Algorithms 1 and 2, where samples
are generated by our active sampling scheme.

5.2 The performance comparsion in the policy eval-
uation step

We compare our Off-BPG with the BPG in the policy eval-
uation step. The true gradient is given byη(θ) =

∫
−(a −

3)2∇ log p(x)p(x)dx = [6,−6]>. Fig.3 shows the perfor-
mance comparison, averaged over 100 learning runs. Fig.3
(a) shows that Off-BPG could estimate the policy gradient
more efficiently than the BPG, and Fig.3 (b) shows that the
variance of Off-BPG decreased faster than the BPG.
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Figure 3: The performance comparison in the policy evalua-
tion step.

5.3 The performance comparsion in the policy im-
provement step

We compared our Off-BPG with the BPG in the policy im-
provement step. In our experiment, we examined two condi-
tions of the sample size,M = 5, 10, which was used in each
policy evaluation step. The policy evaluation with a smallM
can make large variance of the policy gradient estimate, and
then the policy improvement can be slow and unstable. Fig.4
(a) shows the Euclidean distance between the optimal param-
eter and the estimated parameter:||θopt − θ||. Our Off-BPG
with only 5 samples converged much faster than the BPG with
10 samples. On the other hand, the BPG with 5 samples could
not converge but diverge. Fig.4 (b) shows that the parameter,

which is the standard derivation of the policy, was updated
to an incorrect direction by 5 sample size in the BPG, while
Off-BPG worked toward a correct direction. This is because
the policy gradient could not be estimated by that sample size
passibly.
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Figure 4: (a) Euclidian distance between the optimal and the
estimated policy parameters. (b) Learning behavior of the
policy parameter, which is the standard derivation of the pol-
icy.

6 Conclusion and Future Work

In this study, we proposed a reinforcement learning algo-
rithm with active sampling based on Gaussian process (GP),
called “Off-BPG”. Our algorithm used the estimation vari-
ance of the policy gradient to explore the most efficient sam-
ples. Computer experiments showed that our algorithm could
drastically reduce variance and realize fast convergence of the
policy. However, the applicability has so far been shown in a
simple bandit problem. Then, we will extend the applicability
of our Off-BPG to more realistic problems as a future work.
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