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Abstract

Biologically inspired control approaches based on
central pattern generators (CPGs) with neural oscil-
lators have been drawing much attention to gener-
ate rhythmic motion for biped robots that resemble
human-like locomotion. This paper describes the de-
sign of a neural oscillator based gait rhythm generator
using a network of Matsuoka oscillators to generate
a walk pattern for biped robots. This includes proper
consideration of oscillator’s parameters, such as a time
constant adaptation rate, coupling factors for mutual
inhibitory connections, etc., to obtain a stable and
desirable response from the network. The paper ex-
amines the characteristics of a CPG network with six
oscillators and the effect of assigning symmetrical and
asymmetrical coupling coefficients among oscillators
within the network structure under different possibil-
ities of inhibitions and excitations. The kinematics
and dynamic of a five-link biped robot has been mod-
eled and its joints are actuated through simulation by
the torques output from the neural rhythm generator
to generate the trajectories for hip, knee, and ankle
joints. The parameters of the neural oscillators are
tuned to achieve flexible trajectories. The CPG based
control strategy are implemented and tested through
simulation.

1 Introduction

Recent studies on the biped locomotion enabled hu-
manoid robots to navigate real environments [1]. ZMP
(Zero Moment Point) based control approaches are
used to describe the stability and control of biped
robot systems by following a targeted trajectory [2].
These approaches have focused on the ability of exe-
cuting planned movements at any instance by ensuring
surface contact between the sole and the ground. In

general, the developed ZMP based control algorithms
for bipedal locomotion have been shown to be effec-
tive to achieve bipedal locomotion in legged robots
with flat feet. However, they require precise modeling
and precise joint actuation with high control gains.
From the biological point of view, locomotion of hu-
man and animals do not require such precision, and
it is quite different from that of current biped robots.
There are evidences showing the existence of various
oscillatory or rhythmic pattern generation activities
within the neural circuitry in almost every animal,
and most of them are produced without receiving any
particular extrinsic oscillatory stimulus [3]. The fun-
damental mechanisms of animals, rhythmic biological
movement, such as locomotive motion of quadrupeds,
flapping of bird wings, swimming of fish, crabs, etc.
are typical examples of oscillatory activities that have
been studied both in biological science and in engi-
neering.

Neurobiological studies revealed that rhythmic mo-
tor patterns are controlled by neural oscillators re-
ferred to as CPGs which generate oscillatory signals
[4]. It has been also suggested that sensory feed-
back plays an important role in stabilizing rhythmic
movements by coordinating the physical system and
the CPGs [5]. In contrast to off-line trajectory plan-
ning, biologically inspired control approaches based
on CPGs with neural oscillators have been drawing
much attention to generate rhythmic motion for biped
robots that featured with self-adaptive properties to
cope with change in their environment [6-8]. The neu-
ral oscillator proposed by Matsuoka [3] is widely used
to model the firing rate of two mutually inhibiting neu-
rons described in a set of differential equations. This
model is used in robotic applications to achieve desig-
nated tasks involving rhythmic motion which requires
interactions between the system and the environment.
However, it is very difficult to determine the CPG pa-
rameter values for various robots and environments,



since there is no design principle to determine the pa-
rameter values.

This paper describes the design of an oscillator-
based gait rhythm generator using a network of Mat-
suoka oscillators to generate a walk pattern for biped
robots. This includes proper consideration of oscil-
lator’s parameters such as a time constant, coupling
factors for mutual inhibitory connection, etc., to ob-
tain a stable and desirable response from the CPG
network. The paper examines the characteristics of
CPG network with six oscillators and the effect of as-
signing symmetrical and asymmetrical coupling coeffi-
cients among oscillators within the network structure
under different possibilities of inhibitions and excita-
tions.

2 The CPGs and Neural Oscillator
Model

Almost all species developed completely different
form of locomotion perfectly suited to its morphology
and environment to ensure its survival. To achieve
locomotion, the neural system generates rhythmic sig-
nals that are sent to the musculo-skeletal system in
order to produce torques on the different joints of the
animal. There are some evidences showing that the
locomotion patterns in human are generated at the
spinal level, and as such, it has been considered that
humans use a system that is comparable to a CPG for
their locomotion. CPGs are neural networks that can
produce rhythmic motor patterned outputs without
rhythmic sensory or central input.

Bipedal locomotion seems to be more complicated
than the mentioned process as the balance is much im-
portant and critical with only two legs, while it makes
the control extremely crucial. CPG based approach
is directly inspired from biological considerations and
can be represented by different mathematical models
such as oscillators, artificial neurons, vector fields, etc.
Each CPG usually represents one degree of freedom
(DOF). Oscillator based CPGs use the concept of limit
cycles which are very convenient in the case of loco-
motion as they can return to their stable state after a
small perturbation and they are almost not influenced
by a change in the initial conditions. Different mod-
els could be used to represent the interaction between
the CPG and the reflex system that represents the
type of the feedback mechanism from internal sensory
information and the interaction with robot environ-
ment. In order to represent the CPG and generate the
required signals several nonlinear oscillators that are

coupled together have been developed, such as, Hopf,
Rayleigh, Van del Pol, Matsuoka, etc. oscillators.

Due to its simplicity and effectiveness, Matsuoka
oscillator is widely used in many researches on robotics
and CPGs [3, 9]. It is based on the mutual inhibition
of two artificial neurons that generate a periodic signal
as output. The model of each neuron has represented
by two equations with two state variables as below,

τri
dui

dt
= −ui +

n∑
j=1

wijyj + wsis0 − bfi

+ feedi (1)

τai
dfi

dt
= −fi + yi (2)

yi(ui) = max{0, ui} (3)

The first state variable is ui that corresponds to
the membrane potential of the neuron body, and the
second state variable is fi that represents the degree
of fatigue or adaptation (self-inhibition) in the neuron,
while yi is the output of the neuron. The subscripts i, j
denotes the neuron number, τri, is the time constants
that specifies the rise time when given step input.
The frequency of the output is roughly proportional
to 1/τri. In addition, τai, is the time constant that
specifies the time lag of the adaptation effect. wij , de-
notes inhibitory synaptic connection weight from the
jth neuron to the ith neuron; wij ≤ 0 for i 6= j, and
wij = 0 for i = j.

∑
(wijyj), represents the total in-

put from the neurons inside a neural network. s0 is
a driving input and ws0 denotes a connection weight
of the driving input, and feedi, is an input feedback
sensor signal to the neuron and represents the inter-
nal sensory information and interaction between the
robot and its environment (feedi has been added to
the neuron model of Matsuoka to represent the feed-
back sensory information [8]), and it is used mainly
with a closed-loop CPG model.

Figure 1(a) shows the general Matsuoka neuron
model described by equations 1, 2 and 3. Matsuoka os-
cillator consists of two neurons that are linked recipro-
cally while inhibit and excite each other alternatively
to produce an oscillation as output. Such activity is
used to account for the alternating activities of flexor
and extensor muscle at each joint during walking. The
self-inhibition is governed by the bfi connections while
the mutual inhibition is done through the wijyj and
wjiyi connections. The output torque will equal to
τr = yj − yi. Figure 1(b) shows two coupled neurons
of the Matsuoka oscillator.
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Figure 1: (a) General Matsuoka neuron model; (b) One oscillator consisting of an extensor and a flexor

3 Biped Robot and Neural Gait
Rhythm Generator

3.1 The general control strategy for gait
generation

Figure 2 introduces the adopted general control
strategy for the bipedal robot aiming to generate flexi-
ble rhythmic walking gait, and it includes three parts.
The first part consists of two major elements. The
first element represents the high level activity coor-
dinator that can set and activate the relevant neural
rhythmic motion based on external and internal sen-
sory information. The second element within the first
part represents the network of coupled neural oscilla-
tors aiming to generate synchronized rhythmic signals.
The locomotor movement results from torques gener-
ated by the neural rhythm generator and acting at
each joint of the robot. The second part of the control
strategy includes the model of the musculo-skeletal
system along with the mathematical formulation of
the dynamic equations of motion using Newton-Euler
method. The last part represents the feedback signals
that aim to establish a closed-loop to enable real time
adaptation for the walking gait.

3.2 The bipedal musculo-skeletal model

Figure 3 shows the simple model for simulating a
bipedal musculo-skeletal system that has been consid-
ered in this paper. It has five joints and two identical
legs each with three DOFs corresponding to hip, knee
and ankle joints. Each leg is composed of a thigh (links
2 and 3), and a shank (links 4 and 5). In the dynamic
model of the bipedal musculo-skeletal system, the links
are considered to be of uniform rectangular shape with
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Figure 2: The general control strategy for the bipedal
robot

mass at its center. A point mass is used to represent
the remaining part of the body and it is described by
link 1 at the hip. Both legs are integrated at link
1 while assuring suitable detachment. The joints are
numbered as Joints 1, 2, 3, 4, 5 from the side of the
body, where Joint 1 is the hip joint, Joints 2 and 3 are
knee joints, and Joints 4 and 5 are ankle joints.

Due to their low inertia, a point foot has been con-
sidered into the dynamics during the support phase,
and contact with the ground has been represented by
two dimensional spring and damper. Vertical and hor-
izontal ground reaction forces are modeled and calcu-
lated each time the ankle first makes contact with the
ground respectively. A slippage model is established
by using a condition that manages the relation be-
tween both reactive forces and the static friction coef-
ficient of the ground. In addition, the described model
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Figure 3: Five link model for a biped locomotion

is bounded to move within the sagittal plane, and the
torques acting at the joints to realize the walking gait
are assumed to be generated by the neural gait rhythm
generator.

3.3 The mathematical motion formula-
tion of the model

By using the Newton-Euler dynamic formulation,
the general form of equations of motion for the bipedal
musculo-skeletal are derived as below [8],

ẍ = P (x)F + Q(x, ẋ, Tr(y), Fg(x, ẋ)) (4)

where x is a (14× 1) vector of the inertial positions of
5 links and the initial angles of 4 links; P is a (14× 8)
matrix; F is a (8× 1) vector of constraint forces; Q is
a (14 × 1) vector; Tr is a (6 × 1) vector of torques; Fg

is a (4×1) vector of forces on the ankle which depends
on the state of the terrain; and y is a (12 × 1) vector
of the output of the neural rhythm generator.

From the model, the equations of the kinematic con-
straints are formulated, and hence the acceleration can
be obtained by differentiating these equations twice
with respect to time. The yielded equations can be
written in the following compact form,

C(x)ẍ = D(x, ẋ) (5)

The constraint forces can be obtained by substituting
equation (4) into equation (5), and to get the required
accelerations without the use of the constraint forces,
the yielded equation of forces is substituted into equa-
tion (4). Hence, the compact form of the acceleration
equations that represents the motion of the bipedal

musculo-skeletal is,

ẍ = P (x)[C(x)P (x)]−1[D(x, ẋ)
− C(x)Q(x, ẋ, Tr(y), Fg(x, ẋ))]
+ Q(x, ẋ, Tr(y), Fg(x, ẋ)) (6)

To solve the motion equations, the y values are pro-
vided as an output from the neural rhythm generator
that is proportional to the torque. In addition, the
feedback signal from the bipedal robot to the neural
rhythm generator is represented by the joint positions
and velocity of different moving parts of the body, and
the contact forces with the environment.

3.4 The model for the neural rhythm gen-
erator

The neural oscillators are the main elements that
compose the model of the neural rhythm generator.
The simplest model of the neural oscillator consists of
two mutually inhibited neurons with the self adapta-
tion in each of them. Each neural oscillator has four
state variables. Two variables represent the inner state
of each neuron (ui and uj), and the other two state
variables represent the degree of adaptation for each
neuron (fi and fj), respectively. Six of the neural os-
cillators have been used to model the neural rhythm
generator for the bipedal robot. Two oscillators have
been used at the left and right side of the hip and one
oscillator has been used at each of the knee and an-
kle joints. Figure 4 illustrates the arrangement of the
neural oscillators in relation to the adopted bipedal
musculo-skeletal system. The odd number oscillator
represents flexor (F) and the even number oscillator
represents the extensor (E), while τ1 to τ6 represent
the output torques from the oscillators. The con-
figured neural oscillators have inhibitory connections.
The two neurons of each oscillator generate torques
in opposite direction, i.e., the direction of contraction
of flexor and extensor muscle. The algebraic sum of
the torques at each neural oscillator is proportional to
the torque at the relevant joint during bipedal walk.
The inhibitory connection between the hip oscillators
produces alternate excitations to give the alternation
between the movements of the two legs.

The parameters for each neural oscillator and the
interconnection between the oscillators are tuned ex-
perimentally to achieve the generation of a consistent
pattern that assembles human biped motion. The
feedback signal from the bipedal robot to the neural
rhythm generator is represented by the joint positions
and velocity of different moving parts of the body, and
the contact forces with the environment. In case of a



physical biped robot, the feedback sensory informa-
tion are sensed through different internal and external
sensors.

4 Simulation and Results

In order to produce a suitable relative phase at
the joints of each side of the bipedal, the interconnec-
tion between the neural oscillators at each side of the
bipedal has been chosen in the way that the flexor and
extensor of the hip oscillators can inhibit the extensor
neurons of the knee and ankle oscillators as illustrated
in Figure 4 and we can call this model as one-rank
model. The simulation result of the walking gait for
bipedal robot is shown in Figure 5. Based on this
model, both of the knees’ oscillators have been chosen
to inhibit the ankles’ flexor neurons as shown in Fig-
ure 6 and we can call this model as two-rank model.
The simulation result of this case is shown in Figure
7. The total time is 2 seconds and the ground is level.

5 Conclusions

This paper has presented a CPG based control ap-
proach composed of a network of coupled neural oscil-
lators to generate proper rhythmic motion for bipedal
robot. This approach avoids the need to have a per-
fect knowledge of the robot’s dynamics as compared
to the trajectory based methods. In addition, it is
a more general and adaptive to design controllers for
bided robots. Moreover, reflexes that are produced by
the robot’s feedback sensors are used to manage exter-
nal effects within the robot environment and balance
control. However, currently there is no systematic de-
sign principle that can determine the parameter values
for the oscillators and assigning efficient coupling be-
tween oscillators. Hence, the next step of this work
will focus on adapting the parameters of each neu-
ral oscillator with the possibility of reconfiguring the
coupling mechanism between oscillators in real time
through learning paradigm.

References

[1] Hirai, K., Hirise, M., Haikawa, Y., and Take-
naka, T., The development of Honda humanoid
robot, in Proc. of the International Conference
on Robotics and Automation (ICRAf98), vol. 2,
pp. 1321–1326. 1998.

[2] Vukobratovic, M., Borovac, B., Surla, D., and
Stokic, D., Biped Locomotion: Dynamics, Stabil-
ity, Control and Application, Springer,1990.

[3] Matsuoka, K., Sustained oscillations generated by
mutually inhibiting neurons with adaptation, J.
of Biological Cybernetics, vol. 52, pp. 367–376,
1985.

[4] Grillner, S., Wallen, P., and Brodin, L., Neuronal
network generating locomotor behavior in lam-
prey — circuitry, transmitters, membrane prop-
erties, and simulation, Annual Review of Neuro-
science, vol. 14, pp. 169–199, 1991.

[5] Nakamura, Y., Sato, M., and Ishii, S., Reinforce-
ment learning for biped robot, in Proc. of the 2nd
International Symposium on Adaptive Motion of
Animals and Machines (AMAM2003), ThP-II-5,
Kyoto, March 4–8, 2003.

[6] Nakanishi, J., Morimoto, J., Endo, G., Cheng,
G., Schaal, S., and Kawato, K., Learning from
demonstration and adaptation of biped locomo-
tion, Robotics and Autonomous Systems, vol. 47,
pp. 79–91, 2004.

[7] Williamson, M. M., Robot arm control exploit-
ing natural dynamics, Ph.D. Thesis, MIT, Cam-
bridge, Massachusetts, June 1999.

[8] Taga, G., Yamaguchi, Y., and Shimizu, H., Self-
organized control of bipedal locomotion by neural
oscillators in unpredictable environment, Biolog-
ical Cybernetics, vol. 65, pp. 147–159, 1991.

[9] Matsuoka, K., Mechanisms of frequency and pat-
tern control in the neural rhythm generators, Bi-
ological Cybernetics, vol. 56, pp. 345–353, 1987.



O1

O8 O7 O6O5

O3

O2

O11 O10O9O12

O4

Right legLeft leg

ττττ3333

ττττ5555

ττττ4444

ττττ6666

ττττ1111ττττ2222

F

E

Figure 4: One-rank CPG network of biped model
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Figure 5: The simulated walking gait of bipedal using
one-rank model in Fig. 4
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Figure 6: Two-rank CPG network for a biped locomo-
tion
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Figure 7: The simulated walking gait of bipedal using
two-rank model in Fig. 6


