
Kansei with Behavioral Patterns for Human-Robot Interaction in Ubiquitous
Environments

Janaka Chaminda Balasuriya*, Kouhei Kamohara*, Chandrajith Ashuboda Marasinghe**,
Keigo Watanabe*, and Kiyotaka Izumi*

*Department of Advanced Systems Control Engineering
Saga University, 1-Honjomachi, Saga 840-8502, Japan

**Software Engineering Lab, Department of Computer Software
University of Aizu, Aizu-Wakamatsu, Fukushima, Japan

*jcbala@lycos.com, k.kouhey.8–5017@docomo.ne.jp,
{watanabe,izumi}@me.saga-u.ac.jp, **ashu@u-aizu.ac.jp

Abstract

Humans have two distinct features with compared
to any other living being; unique physical nature and
emotions / feelings. Anybody who studies on humans
or trying to construct human like machines should con-
sider these two vital facts. When robots are interacting
with humans and other objects, they certainly have a
safe distance between them and the object. But how
can this distance be optimized when interacting with
humans? Will there be any advantages over achiev-
ing this? Will it help to improve the condition of
robots? Can it be a mere constant distance? How
will the humans react? In order to ‘humanize’ robots,
they (robots) should also have certain understating of
such emotions that we, humans have. In this research
project, authors are trying to ‘teach’ one such human
understanding, commonly known as ‘personal space’
to autonomous mobile robots.

1 Introduction

As Simmons et al. [1] describe, recent research in
mobile robot navigation has utilized autonomous mo-
bile robots in service fields. To operate them in an
environment with people, it requires more than just
localization and navigation. The robots should rec-
ognize and act according to human social behavior to
share the resources without conflict [2].

The comfort level of the humans for which the robot
is working will be very important if the robot is to do
its job effectively. But very little work has been per-
formed in trying to understand how people would inter-
act with a robot, how to make them comfortable, ways
for robots to indicate their feelings, etc. to analyze the

aesthetic qualities of the robots behavior patterns [2].

1.1 Distance from the robot to the vicin-
ity

Usually there is a ‘space gap’ between the robot
to the near by. As Stentz [3] and many others had
mentioned, this was just a constant of space. This
mechanism was quite acceptable for the systems such
as transporting, surveillance and monitoring, etc. In
other words, such kind of safe distance was good for
non-human interacting purposes. Can the same be ap-
plied for human interaction? Although it will give some
results, it will not enhance or optimize the real require-
ment in need, i.e. to build up harmonious relationship
with humans.

1.2 Nakauchi model

When Nakauchi and Simmons [2] studied about per-
sonal space and applied it to moving robots, it was
some improvement over the ‘blind’ safe distant. In
their mechanism, Nakauchi and Simmons had experi-
mented using human subjects for ‘correct distance’ or
‘personal space’ in order to have pleasant feeling to-
wards the two interacting parties.

1.3 Walters experiments

Another set of experiments were conducted by Wal-
ters et al. [4] to find the personal space zones, initial
distances between robot and humans, etc. They also
tried to compare human-robot interpersonal distances
with that of the human-human interpersonal distances
as described by Hall [5]. According to Hall, the gener-
ally recognized personal space zones between humans



Table 1: Personal space zones.
Zone Range (m) Interaction

Intimate 0 – 0.15 Loved ones
Close 0.15 – 0.45 Close friends

Personal 0.45 – 1.20 Friends
Social 1.2 – 3.60 Strangers
Public 3.60 + Public

are well known and are summarized (for Northern Eu-
ropeans) in Table 1.

2 Variation of Personal Space

Although it is possible to find a personal space for
a specific instance of environment, it is highly volatile
depending on the two interaction parties and not def-
initely a constant. As Walters et al. [4] suggested,
different robot social models, perhaps with very dif-
ferent initial personalities, may be more acceptable to
different users. For example, adjustments of social dis-
tances according to a user’s personality trait will be a
promising direction.
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Figure 1: APS ANFIS block diagram.

The personal space at any given instance varies de-
pending on cultural norms and on the task being per-
formed. Appearance, familiarity, gender, age, height
of the bodies, etc. were considered to be important.
Height, appearance and familiarity were considered (as
the initial stage for simplicity) to generate an active
personal space (APS) determination system and the
block diagram is shown in Figure 1.

3 ANFIS for Personal Space Determi-
nation

Adaptive Neural Fuzzy Inference System or simply
ANFIS can be used as a basis for constructing a set of

fuzzy if-then rules with appropriate membership func-
tions to generate the desired input-output combina-
tion. It is especially useful when needed to apply a
fuzzy inference to already collected input-output data
pairs for model building, model following, etc. where
there are no predetermined model structures based on
characteristics of variables in the system.

3.1 Gathering data

Considering the procedure as Nakauchi and Sim-
mons [2] or the Walters et al. [4] to obtain a sense of
personal space for robot / human interaction, a similar
experimental condition was constructed. Here a robot
(or a model) is kept at the end of a scaled line in a
room and a human is asked to move closer to it.
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Figure 2: Input data sets (for training, checking and
testing) to the APS ANFIS.

3.2 Experimental procedure

As the experiment proceeds, one human subject is
instructed to move towards the robots as if he needs to
talk with it. The human subject is asked to be along
the scaled line and look at the robot face and move
closer to it until he feels safe enough to make conver-
sation with it. In the mean time the robotic model was
positioned so as to make its face towards the human
subject. During the whole time of the experiment, the
robot did not do anything and the human subject did
all the active tasks of walking, thinking, etc. The dis-
tance between the two parties was obtained by using
a camera or by direct human observer (who reached
the two parties once they got stabilized). The human
subject had no previous experience with the robot and
the authors wanted the human subjects to be curious
as well as cautioned about the robot that they are go-
ing to meet. In other wards human subjects had no



idea what kind of robotic system that they are going
to face with or any capabilities that it possesses until
they meet the robot.

The robots and the robotic models used in these
experiments are ‘KooruKun’ (PA10 robotic manipu-
lator), ‘BoxChyan’ (robotic model), and ‘BasinKun’
(previously known as ‘CHRCarry Hospital Robot’ re-
used with several modifications). The first one was a
stationary robot with 200 cm in height and 20 cm av-
erage diameter, next was a movable robot model with
100 cm height, 50 cm diameter and around 3 Kg, and
the last is also a movable robot with 170 cm height,
generalized circular diameter of 60 cm and weight of
about 25 Kg. The data gathered are grouped for train-
ing, checking and testing for the ANFIS and are shown
in Figure 2.
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Figure 3: APS ANFIS architecture.

4 ANFIS Architecture

The architecture of the APS determination network
is illustrated in Figure 3. Layer (I) to Layer (III) rep-
resent the antecedent part of the fuzzy neural network,
whereas Layer (V) and Layer (VI) represent the con-
sequence part. As shown in Figure 3, the domain of
discourse of height (H) is described by fuzzy variable H
with p number of linguistic values (p = 3), the domain
of discourse of appearance (A) is described by fuzzy
variable A with q number of linguistic values (q = 3),
and the domain of discourse of familiarity (F) is de-
scribed by fuzzy variable F with r number of linguistic
values (r = 3). Hence each input variable is unique in
the sense of domain of discourse. It is assumed that

each node of the same layer has a similar function, as
described below. Here we denote the output of the ith
node in layer (X) as O(X),i.
Layer (I): Layer (I) consists of three types of nodes;
height (H), appearance (A) and familiarity (F). The
current value of height (H), i.e. the crisp input to the
height node is Hi, appearance node is Aj and familiar-
ity node is Fk. No computation is carried out at this
layer.
Layer (II): This layer acts as the fuzzification layer of
the fuzzy neural network. At this layer, the output of
a node connected to the current value of input variable
acquires the fuzzy membership value of the universe of
discourse. Every node i, where i = 1, · · · , p (or q or r),
in this layer is an adaptive node with a node function

OII, i = µXi (x) (1)

where x is the input to node i, and Xi is the linguistic
label (big, medium, small, etc.) associated with this
node function. In other words, OII,i is the membership
function of Xi and it specifies the degree to which the
given x satisfied the quantifier Xi. Hence the output
from the 2nd layer will be:

OII, p = µHi (Hi) (2)

OII, q = µAq (Aj) (3)

OII, r = µFr (Fk) (4)

for height, appearance and familiarity respectively.
Layer (III): In this layer, the nodes labeled as Π com-
pute the T-norm of the antecedent part. Thus the rule
evaluates the conditions of the inputs and they are con-
tinued to the layer (V) for normalization. The output
of any node t, where t = 1, · · · , N , where N = p ∗ q ∗ r,
in this layer is described by the following equation:

OIII, t = ht = µHi (Hi) ∗ µAq (Aj) ∗ µFr (Fk) (5)

where ht represents the firing strength of the tth rule
and there are N such rules as total.
Layer (IV): The first node of layer (IV) at fuzzy neural
network, which has symbols

∑
and g, generates the

output through the following function:

g(x) =
1
x

(6)

with a linear summed input. Then the output of the
first node of layer IV is given by

OIV, 1 =
1

N∑

t=1

ht

(7)



Other nodes just carry forward the outputs of previous
nodes to the next layer.
Layer (V): This layer normalizes the fired rule values.
Each node labeled as Π in this layer multiplies the
value carried forward by previous node with the output
of the first node at Layer (IV). Then the output of any
mth node of this layer can be given by the following
equation:

OV, m =
hm

N∑

t=1

ht

(8)

Layer (VI): Layer (VI) is the defuzzification layer of
the fuzzy neural network. The node labeled as

∑
in

this layer calculates the overall output as the summa-
tion of all incoming signals. Then the personal distance
value for certain input variables is given by:

OV I = Personal Diatance =

N∑

m=1

wmhm

N∑

n=1

hn

(9)

where wm denotes a constant value in the consequence
part of the mth rule. The overall output is the
weighted mean of wm with respect to the weight hm.

The connection weights are trained by applying the
hybrid algorithm. The error tolerance was set to zero.

The error is calculated by comparing the output of
the expert knowledge with that of fuzzy neural network
for the same input data, x. The adaptation of the
mth weight, wm, at the lth time step is given by the
following equation:

wm (l + 1) = wm (l) + γ [yd − ya]
hm

N∑

n=1

hn

(10)

where γ represents a small positive learning rate, and
yd and ya represent the desired output and actual out-
put respectively for the personal space value selected
for the training.

The trained ANFIS with check data is shown in Fig-
ure 4.

5 Summary

In this research project, a determination system of
an active personal space has been analyzed. This can
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Figure 4: Trained FIS with check data.

be considered as the first step for constructing an ac-
tive personal space system for any robot in any en-
vironment. But for a target as such, many experi-
ments in vast environmental situations should have to
be involved. It is a must to obtain similar data with
the so–called humanoids to make this experiment com-
plete. This system gave encouraging results in an of-
fline mode with limited facilities. Authors are planning
to make the current system more realistic and get the
functioning in a real time mode, and are continuously
working on it.
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