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Abstract
This paper introduces a fuzzy Kalman filter based

approach for mapping robot environments. Takagi-
Sugeno fuzzy models for nonlinear system are adopted
to represent the vehicle and landmarks state equa-
tions. The complete system of the vehicle and land-
marks model is decomposed into several linear models.
Using the Kalman filter theory, each local model is fil-
tered to find the local estimates. The linear combina-
tion of these local estimates gives the global estimate
for the complete system. This estimator is simulated
using Matlab for the vehicle-landmark system and re-
sults prove that the new approach can accurately map
the environment.

1 Introduction

Simulataneous localization and map building
(SLAM) has been a long term study in the autonomous
vehicle research community. The ability to place an
autonomous vehicle at an unknown location in an un-
known environment and then have building a map,
using only relative observations of the environment
and moreover to use this map simultaneously to nav-
igate would indeed make such a robot “autonomous.”
Thus the main advantage of SLAM is that it elim-
inates the need for artificial infrastructure or a pri-
ori topological knowledge of the environment. A so-
lution to the SLAM problem would be inestimable
value in a range of application where absolute posi-
tion or precise map information is unobtainable, in-
cluding amongst others, autonomous planetary explo-
ration, subsea autonomous vehicles, autonomous air-
borne vehicles, and autonomous all-terrain vehicles in
tasks such as a mining and construction.

The solution to the SLAM problem is the estima-
tion of vehicle and landmarks states. How accurately
these states are estimated depends on the estimator.

Estimation of an unknown variable distorted by noise
can be challenged by probabilistic approaches to give a
resonable estimation. In SLAM problem, Kalman fil-
teting of the state estimates is widely used due to its
popularity as it directly provides both a recursive so-
lution to the navigation problem and a means of com-
puting consistent estimates for the uncertainity in the
vehicle and landmark locations on the basis of statis-
tical models for vehicle motion and relative landmark
locations. Extended Kalman filter (EKF) has been
identified as a very good state estimator for the SLAM
problem because it gives very accurate solution to the
SLAM. A good EKF algorithm for the SLAM problem
has been demostrated by Dissanayake et al. [1].

In the history of nonlinear control systems, fuzzy
logic control has played a major role in controlling
nonlinear systems. Fuzzy logic has been a promising
control tool for the nonlinear systems. Fuzzy state
estimation is a topic that has receieved very little at-
tention. Fuzzy Kalman filtering [2] is a recently pro-
posed method to extend Kalman filter to the case
where the linear system parameters are fuzzy variables
withing intervals. As a solution to fuzzy state esti-
mation, Takagi-Sugeno (T-S) fuzzy model based on
observation for nonlinear systems has been illustrated
in [3]. As the first step of finding full fuzzy Kalman
filter algorithm for the SLAM problem, we here intro-
duce feature based mapping of the robot environment
using the fuzzy Kalman filter algorithm presented in
[3]. Simulation results show that the new approach to
mapping with fuzzy logic gives accuarate state estima-
tion with less computational complexity compared to
the EKF approach.

Section 2 presents the T-S fuzzy model for nonlinear
system and the state estimation. Section 3 presents
the state estimator for each local system in T-S model.
Section 4 illustrates feature based mapping for vehicle-
landmarks system and offers some simulation results
and Section 5 mentions some concluding remarks.



2 Kalman Filtering for Nonlinear Sys-
tems Presented by Takagi-Sugeno
Fuzzy Model

Nonlinear systems can be approximated as locally
linear systems in much the same way that nonlinear
functions can be approximated as piecewise linear
functions. Nonlinear systems can be represented by
fuzzy linear models of the following form

if z1[k] is Fi1 and...and zg[k] is Fig then

x[k + 1] = Aix[k] + Biu[k] + Giw[k]
y[k] = Cix[k] + v[k] (i = 1, ..., L) (1)

This is referred to as a Takagi-Sugeno fuzzy model.
The zj are premise variables, k is the time index, Fij

are fuzzy sets, x[k] ∈ Rn is the state vector, u[k] ∈ Rm

is the deterministic input, w[k] is the process noise,
y[k] ∈ Rr is the measured output, and v[k] is the
measurement noise. The dynamic behavior of the xi[k]
and yi[k] signals is presented as follows:

xi[k + 1] = Aixi[k] + hi(z[k])Biu[k] + hi(z[k])Giw[k]

yi[k] = Cixi[k] + hi(z[k])v[k] (i = 1, ..., L) (2)

Complete proof of Eq. (2) can be found in [3]. Sup-
pose we are given an n-dimentional linear discrete time
system of the form:

x[k + 1] = Ax[k] + h[k]Bu[k] + h[k]Gw[k]
y[k] = Cx[k] + h[k]v[k] (3)

where the scalar h[k] ∈ [0, 1], the process noise w[k]
is white with PSD Sw, the measurment noise v[k] is
white with PSD Sv, and the process noise and mea-
surement noise are uncorrelated. Although the A,
B and C matrices are constant, the system is time-
varying because of the time-varying scalar h[k]. If the
premise variables are functions of the state or control,
then the system is also nonlinear because h[k] is a func-
tion of the state or control. The state x of the system
can be estimated by the Kalman filter, which can be
derived by assuming a recursive estimator of the form:

x̂+[k] = M [k]x̂−[k] + K[k]y[k]
x̂−[k + 1] = Ax̂+[k] + h[k]Bu[k] (4)

M [k] and K[k] are related by M [k] = I − K[k]C.
If h[k] is independent of x, it can be shown that the
covariance is propagated as follows:

P+[k] = (I − K[k]C)P−[k](I − K[k]C)T

+h2[k]K[k]SvKT[k] (5)

We can find the optimal value of K[k] by taking the
partial derivative of the trace of P+[k] with respect to
K[k] and setting it equal to zero, which gives:

(K[k]C − I)P−[k]CT + h2[k]K[k]Sv = 0 (6)

3 A State Estimator for the T-S Fuzzy
Model

The steady state Kalman filter presented in the pre-
ceding section can be used to estimate the states of
each of the L dynamic systems given in Eq. (2). This
will give us L local steady state estimated as follows:

P−
i [k + 1] = Ai(P−

i [k]−Ki[k]CiP
−
i [k])AT

i + GiSwGT
i

Ki[k] = P−
i [k]CT

i (CiP
−
i [k]CT

i + Sv)−1

x̂+
i [k] = (I − Ki[k]Ci)x̂

−
i [k] + Ki[k]yi[k]

x̂−
i [k+1] = Aix̂

+
i [k]+hi[k]Biu[k] (i = 1, ..., L) (7)

Note that Sw and Sv in the above quations can
be repleced with (1/3)Sv and (1/3)Sw respectively
for E(h2[k]) = 1/3. Since we know that x[k] =∑L

i=1 xi[k], we can combine the local state estimates
in Eq. (7) to estimate the state of the T-S fuzzy model
(Eq. (1)) as:

x̂[k] =
L∑

i=1

x̂i[k] (8)

4 Illustration of Feature Based Map-
ping using Fuzzy Kalman Filter

In the following, the vehicle state is defined by xv =
[x, y]T where x and y are the coordinates of the center
of the rear axel of the vehicle with respect to some
global coordinate frame. The landmarks are modeled
as point landmarks and represented by a cartesian pair
xf = [xi, yi]T, i = 1, ..., N . Both vehicle and landmark
states are registered in the same frame of reference.

1) The Process Model: Figure 1 shows a schematic
diagram of the vehicle in the process of observing a
landmark. The following kinematic equations can be
used to predict the vehicle state from the orientation
of the vehicle φ and velocity input V :

ẋ = V cos(φ)
ẏ = V sin(φ) (9)



Pi(xi, yi)
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Figure 1: Vehicle and observation kinematics

Eq. (9) can be used to obtain a discrete-time vehicle
process model in the form[

x(k + 1)
y(k + 1)

]
=

[
x(k) + ∆TV (k)cos(φ(k))
y(k) + ∆TV (k)sin(φ(k))

]
+ w[k]

(10)
The landmarks in the environment are assumed to be
stationary point targets. The landmark process model
is thus [

xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
(11)

for all landmarks i = 1, ..., N . Eq. (10) together with
Eq. (11) defines the state transition matrix for the
vehicle-landmarks system.
2) The Observation Model: In general, the range ri(k)
and the bearing θi(k) to a landmark i are recorded
by the range and bearing sensors. In this illustra-
tion, it is assumed that sensor data are processed
to give the horizontal xvf (k) and vertical yvf (k) dis-
tances between the vehicle position and a landmark
position in the same reference frame as the observa-
tions. The range measurements and bearing measur-
ments are taken from the center of rear vehicle axis
where the vehicle position (x, y) is taken. Refering
to Fig. 1 and the above description, the observation
model for a specific landmark can be formulated as

xvf (k) = xi(k) − x(k) + vx(k)
yvf (k) = yi(k) − y(k) + vy(k) (12)

where vx and vy are the noise sequences associated
with the xvf and yvf respectively and assumed to be
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Figure 2: Vehicle-landmarks membership functions

equal.
3) Estimation Process: Fuzzy Kalman filter described
in Sections 3 and 4 is employed to generate the esti-
mates for the fuzzy dynamic models given in Eq. (2).

4.1 Simulation Results

In this section, we are going to show the simulation
results for the feature based mapping for the system
composite of Eqs. (10), (11) and (12) while assuming
the inital estimate and covariance to start estimation
process. The process model given by Eqs. (10) and
(11), and the observation model given by Eq. (12) can
be used to formulate the dynamic system as follows:

x[k + 1] = x[k] +


∆T cos(φ(k))
∆T sin(φ(k))

0
0

V (k) + w[k]

y[k] =
[

−1 0 1 0
0 −1 0 1

]
x[k] + v[k] (13)

where ∆T is the sample time. w[k] and v[k] are the
process and observation noise respectively. Now con-
sider the following two subsystems.
The first system is as follows:

x1[k + 1] = x1[k] + h1


∆T

cos(φ(k))

0
0
0

 V (k) + h1w[k]

y1[k] =
[

−1 0 1 0
0 0 0 0

]
x1[k] + h1v[k] (14)
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Figure 3: Evolution of map over time

where h1 = cos2(φ(k)) is the membership function for
the first subsystem. The second subsystem system is
given as:

x2[k + 1] = x2[k] + h2


0

∆T
sin(φ(k))

0
0

V (k) + h2w[k]

y2[k] =
[

0 0 0 0
0 −1 0 1

]
x2[k] + h2v[k] (15)

where h2 = sin2(φ(k)) is the membership function for
the second subsystem. Membership grade functions
are shown in Fig. 2. It can be seen that h1 + h2 = 1
and the combination of these two subsystems results in
the dynamic system model shown in Eq. (13). The two
local state vectors of each subsystem are in the form
of the two local state vectors given by Eq. (2) and are
estimated according to the Eq. (7) and are combined
according to the Eq. (8) to obtain the global state es-
timate. The system and Kalman filter equations were
simulated using Matlab. An enivornment with 6 arbi-
trarily placed landmarks was simulated with a given
vehicle trajectory. Landmark location states were up-
dated using Kalman filter equations for 600 times.
Sumulation results are depicted in Figs. 3 and 4. Fig-
ure 3 shows the evolution of the map over the time. It
can be seen that error ellipses are getting converged to
the acutal landmark locations as the map of the land-
mark locations is being build when the vehicle nav-
igates through the enviroment. Figure 4 shows that
the errors in each landmark state decrease over time
and reach the minimum value 0. The above mentioned
results indicate that the newly presented method for
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Figure 4: Landmark state estimation errors

map building performs well and provides state esti-
mates that converge to zero.

5 Conclusion

We have proposed a new approach to state estima-
tion based on Takagi-Sugeno nonlinear fuzzy model.
Kalman filter state estimator was modified to give
a fuzzy Kalman filter. Kalman filter state estima-
tor equations were designed for each of the local sys-
tems of the T-S model and local filters were combined
to obtain the global estimator. We showed that the
proposed estimator minimizes the expected value of
the estimation error and converges to zero over time.
Simulation results have been presented for a nonlinear
vehicle-landmark system, showing the effectiveness of
this scheme of state estimation.
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