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Abstract

This paper theoretically describes calling behav-
iors of Japanese tree frogs Hyla japonica with a sim-
ple model of phase oscillators. Experimental analysis
showed that while isolated single frogs called nearly
periodically, a pair of interacting frogs called alter-
nately. We model these phenomena as a system of
coupled phase oscillators, where each isolated oscilla-
tor behaves periodically as a model of the calling of
a single frog and two coupled oscillators shows anti-
phase synchronization, reflecting the alternately call-
ing behavior of two interacting frogs. Then, we extend
the model to a system of three oscillators correspond-
ing to three interacting frogs and analyse the dynam-
ics. We also discuss a biological meaning of the calling
behaviors and its possible application to Artificial Life
and Robotics.

1 Introduction

Nonlinear dynamics like synchronization has been
both experimentally and theoretically analyzed in
many biological systems [1–7] with respect to possible
functions. In this paper, we consider calling behav-
iors of frogs from the viewpoint of nonlinear dynam-
ics. There have been some experimental studies on
synchronization of calls of frogs. Loftus-Hills studied
the synchronization in calling behaviors of frogs Pseu-

dacris streckeri [8], where tape-recorded calls were
used to evoke response of frogs. Lemon and Struger
studied acoustic entrainment to randomly generated
calls in frogs Hyla crucifer [9]. Here, we theoreti-
cally study spontaneous calling behaviors [10, 11] of
Japanese tree frogs Hyla japonica shown in Fig. 1
and discuss a possible application to artificial life and
robotics.

Figure 1: Japanese tree frog Hyla japonica.

2 Experimental Results

Male Japanese tree frogs Hyla japonica which were
collected from breeding assemblages in paddy fields in
Kyoto, Japan were used for the experiment. Sponta-
neous mating calls were recorded and analyzed.

Figure 2 shows an example of the waveforms of
the calls recorded from (a) a single frog calling alone
and (b) two interacting frogs calling together. While
a single frog called nearly periodically as shown in
Fig. 2(a), two frogs called alternately as shown in
Fig. 2(b). The detail of the experiment was reported
elsewhere [10, 11].

3 Mathematical Modeling of Frogs’

calling behaviors

3.1 Phase oscillator model

We model the calling behaviors of frogs as phase
oscillators. The calling of a single frog is regarded
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Figure 2: The waveforms of the calls of (a) a single frog and (b) two interacting frogs. A single frog called nearly
periodically, and a pair of frogs called alternately.

as a periodic phase oscillator, and the calling of two
interacting frogs as two coupled phase oscillators.

First, we consider the situation that each frog calls
alone. The calling behavior of respective frogs is de-
scribed as a phase oscillator with the phase variable θ
with θ ∈ S

1 = (R mod 2π) = [−π, π]/{−π ≡ π} [6]
as follows:

dθ

dt
= ω, (1)

where ω is an intrinsic natural frequency. It is assumed
that θ = 0 correspond to each call. This model repre-
sents the property that single frog calls periodically.

Then, we model the situation that two frogs call to-
gether through interaction. The system is described as
two coupled phase oscillators with two phase variables
θA and θB as follows (see also [10, 11]):

dθA

dt
= ω + gAB(θB − θA), (2)

dθB

dt
= ω + gBA(θA − θB), (3)

where ω is the intrinsic frequency that is assumed to
be the same between two frogs, and gAB and gBA are
2π-periodic functions that represent the mutual inter-
action. To examine whether two oscillators synchro-
nize, we analyze the dynamics of the phase difference
φ ≡ θA − θB with φ ∈ S

1. Subtracting Eq.(3) from
Eq. (2), we obtain the following equation on φ:

dφ

dt
= gAB(−φ) − gBA(φ). (4)

Here, we assume gAB and gBA to be a sinusoidal
function for the sake of simplicity, according to the

former studies [2, 3], then, Eq.(4) is calculated as fol-
lows:

dφ

dt
= 2K sinφ, (5)

where K is a positive coupling coefficient as schemati-
cally shown in Fig. 3(a). The stable equilibrium point

φ∗ which satisfies dφ
dt
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0 is given by φ∗ = π. This stable equilibrium point re-
produces the experimental result qualitatively, namely
these two oscillators synchronize in anti-phase.

3.2 Extension to a system of three frogs

Next, we extend this model to a system of three
coupled oscillators as follows:

dθA

dt
= ω − K1 sin(θB − θA) − K3 sin(θC − θA),(6)

dθB

dt
= ω − K1 sin(θA − θB) − K2 sin(θC − θB),(7)

dθC

dt
= ω − K3 sin(θA − θC) − K2 sin(θB − θC),(8)

where Ki’s (i = 1, 2, 3) are symmetrical coupling co-
efficients between two frogs as schematically shown in
Fig. 3(b). Here, for the simplicity, we assume that
ω = 1.0 and K1 = K3 = 1.0. In order to examine dy-
namical properties in this system, we define the phase
differences φ1 ≡ θA − θB and φ2 ≡ θB − θC . Then,
we change the value of K2 from 0 to 1.0 as the bifur-
cation parameter and numerically examine the stable
equilibrium points φ∗

1
and φ∗

2
.

The bifurcation diagram is shown in Fig. 4. In the
region 0 < K2 < 0.5, oscillators A and B synchro-
nize in anti-phase and oscillators B and C synchronize
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Figure 3: Schematic diagrams in modeling of a system of (a) two frogs and (b) three frogs.
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Figure 4: The bifurcation diagram in the system of
three coupled oscillators, where the red line represents
the phase difference φ∗

1
, and the blue line φ∗

2
.

in-phase. With increasing the value of K2 in the re-
gion 0.5 < K2 < 1.0, on the other hand, the property
of synchronization in this system gradually changes,
and finally three oscillators synchronize in tri-phase
at K2 = 1.0.

4 A Possible Application to Artificial

Life and Robotics

We discuss a biological meaning of the calling be-
haviors and a possible application to artificial life and
robotics. Generally speaking, it is said that the main
purpose of calling by male frogs is to attract females
and tell their own positions to other males [12].

If one male frog mates with one female in a one-
to-one manner, it is important for two males to make
females distinguish them each other. In fact, many
kinds of frogs are known to mate in such a one-to-one
manner [13], including the mating in Japanese tree
frogs [14]. Thus, it is probable that two male Japanese
tree frogs call alternately to be distinguished by a fe-

male. On the other hand, male Japanese tree frogs are
known to inhabit with a low density in breeding as-
semblages [12]. Then, we suppose that the anti-phase
synchronization of two male frogs can play a role of
telling their own positions to other males, resulting in
sparse distribution. In that meaning, anti-phase syn-
chronization would be applicable for multiple artificial
agents and robots to prevent collisions each other in
some real or abstract spaces.

In the actual system of male frogs, coupling coef-
ficients would depend on the distance between male
frogs, because they interact by calling and hearing.
It was numerically confirmed by varying the coupling
coefficient K2 that the system of three coupled oscil-
lators shows more complicated properties than that of
two frogs does similarly to coupled chemical oscilla-
tors [15]. Therefore, the calling behaviors in a system
of many frogs should be much more complicated. For
the purpose of understanding such a system, it is im-
portant to extend the model to a system of many os-
cillators. A simple extension of our model to a larger
system composed of N frogs is given as follows:

dθi

dt
= ωi −

1

N − 1

N
∑

i=1

Kij sin(θj − θi), (9)

where for the ith frog (i = 1, 2, . . . , N), θi is the phase
variable, ωi is an intrinsic natural frequency, and Kij

represents interaction with the jth frog. It is an im-
portant future problem to analyze such a system of
many frogs both experimentally and theoretically.

Moreover, such a study would provide useful mech-
anisms of controlling distributed systems composed of
many artificial agents and robots. For example, in-
phase synchronization and anti-phase one may repre-
sent cooperation and competition between agents and
robots. Moreover, frogs that call in phase together
can be interpreted as a cooperative cluster, which may



produce emergence of a kind of communication.

5 Conclusion

We have theoretically modeled the calling behav-
iors of Japanese tree frogs Hyla japonica as a system of
coupled phase oscillators where two coupled phase os-
cillators synchronize in anti-phase like the real calling
behaviors of two frogs. Biologically speaking, the anti-
phase synchronization would be important for a frog to
tell his own position to the other frog. In this meaning,
anti-phase synchronization would be applicable to pre-
vent collisions of multiple agents and robots. Then, we
have extended the model to a system of three coupled
oscillators and confirmed that such a system shows
more complicated properties than that of two oscilla-
tors does. For the purpose of application to a system
of many agents and robots, it would be an important
future problem to analyze a system of many frogs both
experimentally and theoretically. It is also our future
problem to modify our models more realistic, for ex-
ample, by considering phase shift parameters and dis-
tribution of intrinsic frequencies of frogs.
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