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Abstract

We study the synchronization of limit cycle oscilla-
tors in a fluctuating environment. When environmen-
tal conditions fluctuate due to various kinds of noise,
the dynamics of elements in the environment are in-
evitably perturbed and this may cause some synchro-
nization between them. We analyze this phenomenon
using models in which system parameters are subject
to external noise and fluctuate within a certain range.
Using the phase reduction method, we discuss the syn-
chrony of limit cycle oscillators and show that the Lya-
punov exponent is negative when amplitude of noise
is sufficiently small, namely, synchronization of limit
cycle oscillators in a fluctuating environment is stable.

1 introduction

Phase synchronization of limit cycle oscillators is a
ubiquitous phenomenon, found in a variety of biolog-
ical, chemical and physical fields, and has attracted
much attention for several decades since Winfree’s pi-
oneering work [1] in 1960s. Populations of limit cycle
oscillators that are subject to a strong periodic force
may be entrained to oscillate at the same frequency
as the periodic driving force. Alternatively, limit cy-
cle oscillators interacting with each other directly or
indirectly can synchronize precisely due to mutual in-
teractions among oscillators. In either case, external
or internal noise sources may disturb the phase syn-
chronization of the oscillators because the main effect
of noise on oscillation is phase diffusion. And there-
fore noise has long been considered to exert a negative
influence on synchronization of limit cycle oscillators.

However noise can play also an active role in syn-

chronization of non-interacting oscillators. Challeng-
ing works by Teramae and Tanaka [2] and Goldobin
and Pikovsky [3] have shown that oscillators under
the influence of common weak additive noise can syn-
chronize regardless of their intrinsic properties and
the initial conditions. Since this noise-driven synchro-
nization does not depend on the natural frequency of
oscillators, it obviously differs from entrainment to
an external periodic force. Using the phase reduc-
tion method, they proved in general that the maxi-
mal Lyapunov exponent of an orbit is always negative
with little constraints when they are subject to weak
Gaussian-white noise and this means the phase syn-
chronization of the oscillators.

In their works, noise perturbs states of elements
in the system directly and amplitude of fluctuations
are identical for all elements. However, in some natu-
ral systems, the influence of noise on elements should
be construed in a different way. In a variety of nat-
ural systems, environmental conditions such as tem-
perature and pressure, which determine the dynamics
of elements in the systems, are perturbed by various
kinds of noise sources. In such systems, noise does
not perturb system states directly but dynamics of
systems. Under such an environment, dynamical el-
ements, which exhibit oscillation, are perturbed indi-
rectly by those kinds of noise sources and amplitude
of fluctuations are depend on the states of elements.
Thus we investigate behaviors of non-coupling limit
cycle oscillators in a fluctuating environment and show
another scenario to reach synchronization. In a math-
ematical model, we can treat this situation by adding
noise on system parameters instead of system states.
Using the phase reduction method which is applicable
to an arbitrary oscillator [4, 5], we analytically calcu-



late the Lyapunov exponent of the synchronizing state
and prove that the exponent is negative with some rea-
sonable restrictions. With system parameters fluctu-
ating within a structurally stable region under influ-
ence of external weak noise, phase synchronization of
limit cycle oscillators can occur.

2 Model Description

Population of N identical nonlinear oscillators with
fluctuating parameters is described as

ẋ(i) = F (µ;x(i)) (1)
µ̇ = η(µ, t) = −∇U(µ) + ξ(t) (2)

where i = 1, . . . , N and x(i) is a state vector of the i-th
element in this system. F is common dynamics of the
elements and µ is a parameter vector of the function
F . µ has its energy function U and is perturbed by
noise ξ. ξ is a vector of Gaussian white noise. The
elements of the vector are normalized as 〈ξk(t)〉 = 0
and 〈ξk(s)ξl(t)〉 = 2Dklδ(s− t), where D = (Dkl) is a
variance matrix of the noise components.

We assume that:
(a) µ is bounded within a bounded domain by the en-
ergy function U with probability 1,
(b) F has no bifurcation in the domain,
(c) F has a limit cycle attractor C(µ) in the domain,
(d) F is continuously differentiable by µ and x,
(e) Dkl is sufficiently small.
For these assumptions, we can assume that an attrac-
tor of F is always a limit cycle, which varies contin-
uously with changing of the parameter vector µ, and
that a state of an element is always sufficiently close
to the limit cycle C(µ).

3 Reduction To Phase Dynamics

Just as in the previous works, we use the phase
reduction method to analyze this system. However,
in this system, the limit cycle, on which the elements
are, varies constantly according to fluctuations of the
parameters. And this makes it difficult to define a
phase for an element. Thus, we should make some
preparations for phase reduction.

At first, with constant parameter vector µ, we can
define a phase for a point on C(µ) following stan-
dard procedure [4, 5]. In this article, we normalize
phase by the period of the limit cycle C(µ) so that
its range is [0,1], where 0 and 1 represents the same

phase. We represent a phase θ for a point x ∈ C(µ)
with constant parameter vector µ by θ = Θµ(x) and
its reverse function by x = Xµ(θ). If the parameter
vector µ is constant, phase dynamics are simply writ-
ten as θ̇(i) = ω(µ). Note that the zero phase point
Xµ(0)(= Xµ(1)) can be chosen arbitrarily.

Secondly, a phase for a point in neighborhood of
C(µ) can be defined using an isochrone of a point
on C(µ), i.e., identify a point x′ /∈ C(µ) to a point
x ∈ C(µ) in a way that the orbits from the two
points asymptotically coincide with the parameter vec-
tor fixed to µ (see Fig.1), we represent this map from a
point x′ /∈ C(µ) to a point x ∈ C(µ) by x = Ψµ(x′),
and let the phase of x′ be the phase of x = Ψµ(x′)
with constant parameter µ.

Figure 1: When the parameter vector is fixed to µ, a
phase of a point x′ in a neighborhood of C(µ) can be
defined by identifying its phase to a phase of a point
x which satisfies that the orbit from x asymptotically
coincide with the one from x′.

When the parameter vector varies from µ to µ+∆µ
at time t, a phase of an element varies according to
changing of the attractor C(µ) → C(µ + ∆µ). A
map from a phase with µ to a phase with µ + ∆µ
that describes phase slipping caused by varying the
parameters at time t can be defined as

θ′ = Φµ,∆µ(θ) = Θµ+∆µ(Ψµ+∆µ(Xµ(θ))). (3)

Fig.2 is an example of Φ. Note that, because the zero
phase point can be chosen arbitrarily as mentioned
above, we can always align the phase for µ + ∆µ to
satisfy Φµ,∆µ(0) = 0 (Φµ,∆µ(1) = 1) as we see in
Fig.2. With this alignment, a value ∆s = Φµ,∆µ(θ)−θ
means a phase shift caused by changing of the param-
eter vector µ → µ + ∆µ.

Imagine that the variation of the parameter vec-
tor µ → µ + ∆µ is occurred continuously during ∆t



Figure 2: If the parameter vector varies from µ to
µ + ∆µ at time t, a phase of each point is redefined
by Eq.(3). Origin of phase for µ + ∆µ is aligned so
that Φµ,∆µ(0) = 0 (Φµ,∆µ(1) = 1) is satisfied. ∆s =
θ′ − θ means a phase shift caused by changing of the
parameters.

without moving an element x by F in order to extract
only the effect of phase shift from dynamics. Now we
should define a phase shift function not for µ and ∆µ
but for µ and µ̇. And this is derived by taking a limit
of ∆t to 0 as

φ(µ, µ̇, θ) = lim
∆t→0

∆s(µ,∆µ, θ)
∆t

. (4)

Using Eq.(4), we can reduce Eq.(1) as following:

θ̇ = ω(µ) + φ(µ, µ̇, θ) = ω(µ) + φ(µ,η, θ) (5)

where ω(µ) is a rotating velocity term determined by
µ and F , and φ(µ,η, θ) is a phase shift term deter-
mined by µ, µ̇ and F . In fact, this reduction is valid
only when ω(µ) is sufficiently larger than φ(µ,η, θ)
and the assumption (e) that we have in the previous
section ensures this.

4 Phase Synchronization Induced By
Fluctuating Environment

Suppose that the two phases have an infinitesimally
small difference ∆θ = θ2 − θ1 where θi obeys Eq.(5).
Then the Lyapunov exponent is defined as the long

time average of
d
dt

log ∆θ. By replacing the long time
average with the ensemble average with respect to ξ,
we can represent the Lyapunov exponent as

λ =
〈

d
dt

log ∆θ

〉
ξ

.

With following additional assumptions:
(f) φ is second-times continuously differentiable by θ,
(g) φ is continuously differentiable by µ and η,
we can obtain the following formula:

λ = −
∫ 1

0

dθ

∫
dP (µ)

∑
k,l

Dkl
∂φ′(µ,0, θ)

∂ηk

∂φ′(µ,0, θ)
∂ηl

(6)

where φ′ means φ′ =
∂φ

∂θ
and P (µ) is a steady distri-

bution function of µ.
We have the last assumption here:

(i) φ(µ,η, θ) 6= 0 for almost every (µ,η, θ).
This assumption means that fluctuation of parameters
almost always causes phase shift. Since this assump-
tion ensures ∂φ′(µ,0,θ)

∂ηk
6= 0 for almost every (µ,η, θ)

and the variance matrix Dkl is always positive definite,
λ is negative. This means that the phase synchroniza-
tion induced by perturbation of system parameters is
stable in an arbitrary oscillator system with the as-
sumptions we have.

5 Simulation

In this section, we demonstrate that phase synchro-
nization of limit cycle oscillators can occur when noise
strength is sufficiently small by numerical simulation
using van der Pol oscillator and measure the Lyapunov
exponents numerically.

Dynamics of van der Pol oscillator is described as

ẍ = γ(1 − x2)ẋ − x − bx3

where γ and b are system parameters. Within a certain
region of (γ, b), this system has a structurally stable
limit cycle attractor. This differential equation can be
rewritten in following form.{

ẋ1 = x2

ẋ2 = γ(1 − x2
1)x2 − x1 − bx3

1
(7)

In order to implement a fluctuating environment, we
regard all coefficients in the terms in these differential
equations as parameters (µk) and attach some addi-
tional terms (µ1, µ3x

2
2, µ8x

2
1) as follows:{

ẋ1 = µ1 + µ2x2 + µ3x
2
2

ẋ2 = µ4(µ5 − µ6x
2
1)x2 − µ7x1 − µ8x

2
1 − µ9x

3
1

And we adopt a “U-shape” function U(µ) =∑
k Uk(µ) with

Uk(µ) =

{
0 (|µk(t) − µk(0)| < 0.05)
2.5(µk(t) − µk(0))4 (otherwise)



for the energy function of µ. Initially, the parameters
are set as: µ1 = µ3 = µ8 = 0, µ2 = µ5 = µ6 = µ7 =
1, µ4 = γ, µ9 = b so that dynamics at the initial time is
equivalent to the original equations Eq.(7). The sim-
ulation results are shown in Fig.3. At the initial time,
the elements in the system are not synchronized at all.
However, after long transient, they reach synchroniza-
tion almost completely.
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Figure 3: (a) and (b) show temporal evolution of pa-
rameters µ1, . . . , µ9 for [0, 50] and [1000, 1050] respec-
tively. They fluctuate all along the time by noise al-
though bounded by U . Temporal evolution of x2 of 16
orbits which start from points randomly chosen is plot-
ted in (c) and (d). The variance matrix of the noise is
set as Dkk = 0.01, Dkl = 0(k 6= l). The parameters γ
and b are γ = 0.2 and b = 1.

Fig.4 shows the Lyapunov exponents that are nu-
merically calculated for various noise strengths. When
noise strength is smaller than a certain value, λ de-
creases linearly with the increase of the noise strength
as indicated by Eq.(6). Meanwhile, when noise
strength is strong, λ increases with the increase of the
noise strength and too strong noise eventually desta-
bilize the synchronization of oscillators and the Lya-
punov exponent is no longer negative.

6 Summary

We analyzed phase synchronization induced by per-
turbation of system parameters by reducing the dy-
namics to phase dynamics. And we proved that when
noise that perturb parameters are sufficiently weak
and perturbation of parameters almost always causes
phase shift, the Lyapunov exponent becomes negative.
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Figure 4: The horizontal axis is Dkk (Dkl = 0) and
the vertical axis is the Lyapunov exponent λ. Each
point is obtained by taking an average of 25 trials.

This result is achieved regardless of details of dynam-
ics and initial distributions of elements.

In this article, we only treated the case in which
parameters fluctuate continuously under influence of
noise. Nagai and Nakao [6] discussed phase synchro-
nization induced by a fluctuating input which jumps
between two values at random moments and proved
that when intervals of the jumps are sufficiently large
and phase shift map is monotonic, the Lyapunov ex-
ponent of the system becomes negative. Using their
ideas, our model is also applicable to the case in which
parameters are perturbed discontinuously by noise.
Studies for this case will be reported in the future.
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