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Abstract

Robustness as a system-level property is mainly de-
termined by structural characteristics rather than fine-
tuning parameter values. The relative contribution of
network components or interactions to robustness re-
mains little studied. By decomposing an overall net-
work into smaller subnetworks and then analyzing ef-
fects of the interactions between them, relative impor-
tance of the network components for robustness prop-
erty of oscillations can be derived. Moreover, the im-
provement of robustness against perturbations can be
also made through modification of the structural char-
acteristics or regulatory interactions of the network.
Our analysis focuses on a molecular network that pro-
duces spontaneous oscillations in Dictyostelium dis-

coideum cells.

1 introduction

Robustness is a property that allows a system main-
tains its functions despite external or internal pertur-
bations and uncertainty [1]. It is a key to under-
standing cellular complexity and elucidating design
principles. Owing to intimate links to cellular func-
tions, robustness properties of many oscillatory net-
works through negative or interlocked feedback loops
have been extensively investigated [2]. Investigation
of robustness for general oscillators may focus on the
persistence of regular oscillations, which does not pre-
lude quantitative changes in period or amplitude to
occur. While for circadian oscillators, it may focus
on the period and amplitude sensitivities to evaluate
their precise time-keeping ability with respect to noises
or parameter variations. Most works mainly assess
robustness as a system-level property. The relative
contribution of network components or interactions to
robustness remains little studied.

2 A linear analysis approach to robust-

ness

We model a biochemical network as

ẋ = f(x, p), (1)

where x is the state vector containing the concentra-
tion or activity of all components in the network and
p are the parameters. Since our goal is to consider the
relative importance of interactions for robustness, we
decompose the overall network (1) into smaller sub-
networks Γi consisting of single components modelled
by

ẋi = fi(xi, ui, p). (2)

Each subnetwork Γi has components xi as its only
internal state and output, while all other components
are treated as inputs ui.

The linearization of system (1) around an equilib-
rium x0 is given by

∆ẋ(t) = A∆x(t) with A =
∂f(x(t), p)

∂x
|x0

, (3)

where ∆x(t) = x(t)−x0 denotes deviation of the con-
centrations or activities from the equilibrium x0. The
decomposition of the linearized system (3) into one-
component subnetworks Γi is as follows

∆ẋ(t) = Ã∆x(t) + (A − Ã)∆u, (4)

where Ã is a diagonal matrix containing the diagonal
entries of A. In this way, the linear biochemical net-
work (3) can be seen as an open-loop interaction free
network (4). In other words, we analyze the whole
network by breaking the feedback loop at each step,
viewing the effects of all other components on each xi

as input signals, and after analyzing the relative im-
portance of each component on the robustness prop-
erties of the oscillations, we do re-close the loop by
letting ∆u = ∆x.



The key to our approach is standard feedback con-
trol theory. Following Laplace transformation, the lin-
ear open-loop system (4) then transforms to an alge-
braic equation in s

∆x(s) = L(s)∆u(s), (5)

where L(s) = (sI − Ã)−1(A− Ã). The element Lij(s)
corresponds to the transform function from the com-
ponent j to component i in the absence of any feedback
effects, i.e. the ratio of the output xi to the input xj .

According to the generalized Nyquist criteria, for a
stable open-loop network L(s), a sufficient condition
for instability under positive feedback is that one char-
acteristic locus λi(L(jω)) crosses the real axis to the
right of the point 1 at a single frequency ω = ωcrit. A
perturbation applied to element Lij(iωcrit) such that
this λi(L(jω)) moves to the point 1 on the real axis
corresponds to a stabilizing perturbation.

A perturbation that moves one characteristic locus
λi(L(jω)) at ω = ωcrit to the point on the real axis
corresponds to making the return difference I −L(jω)
singular at the ω = ωcrit, that is,

det(I − Lp(jωcrit)) = 0, (6)

where Lp is the perturbed open-loop system.
The required perturbation ∆ij is given by

∆ij(ωcrit) = −
1

[RGA(I − L(jωcrit))]ij
, (7)

where RGA(M) = M × (M−1)T and the × symbol
denotes element by element multiplication (Hadamard
or Schur product). Thus, elements with relative small
values of stabilizing perturbations |∆ij | correspond to
pairwise interactions that have a large influence on
stability and play an important role in destabilizing
the equilibrium. In other words, elements with rela-
tive small values of stabilizing perturbations |∆ij | are
sensitive to perturbations, while elements with relative
large values of stabilizing perturbations are more ro-
bust to perturbations. If all stabilizing perturbations
are large, the oscillations of the network will be more
robust.

3 Results

Adenosine 3′, 5′-cyclic monophosphate (cAMP) os-
cillations in Dictyostelium discoideum cells are neces-
sary for chemotaxis and further development of Dic-

tyostelium cells. The model, based on the network
depicted in Fig.1, induces spontaneous oscillations in
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Figure 1: Molecular interactions generating cAMP os-
cillations in Dictyotelium discoideum cells. Compo-
nents are connected by regulatory interactions that are
direct or indirect. Arrows and bar heads indicate pos-
itive and negative regulation, respectively. Pulses of
cAMP are produced when adenlylate cyclase (ACA)
is activated after the binding of extracellular cAMP
to the surface receptor CAR1. When cAMP accumu-
lates internally, it activates the protein kinase PKA.
Ligand-bound CAR1 also activates the MAP kinase
ERK2. ERK2 is then inactivated by PKA and no
longer inhibits the cAMP phosphodiesterase REG A.
A protein phosphatase activates REG A such that
REG A can hydrolyse internal cAMP. When REG A
hydrolyses the internal cAMP, PKA activity is inhib-
ited by its regulatory subunit, and the activities of
both ACA and ERK2 go up.

cAMP observed during the early development of D.

discoideum [3]. The deterministic dynamics is gov-
erned by the following equations:

d[ACA]/dt = k1[CAR1] − k2[ACA][PKA],

d[PKA]/dt = k3[internal cAMP] − k4[PKA],

d[ERK2]/dt = k5[CAR1] − k6[PKA][ERK2],

d[REG A]/dt = k7 − k8[ERK2][REG A],

d[internal cAMP]/dt = k9[ACA] − k10[REG A][internal cAMP],

d[external cAMP]/dt = k11[ACA] − k12[external cAMP],

d[CAR1]/dt = k13[external cAMP] − k14[CAR1],

(8)

where ki (i = 1, · · · , 14) are kinetic constants. The
model is based on the common positive and negative
control elements.

For the oscillatory network shown in Fig.1, from the
linearization around the underlying equilibrium we ob-
tain ω = ωcrit = 0.8560 rad/min, at which the critical
characteristic locus λcrit(L(jω)) crosses the real axis to



the right of the critical point (1, 0). The rank-ordered
stabilizing perturbations are shown in Fig.2(a). Even
the largest amplitude of stabilizing perturbations is
small (< 0.035), and it shows the poor robustness
properties of the model. Such result is also supported
in [4].

Different from the parameter sensitivity analysis
used in [2], by which the clues on the importance
of individual regulatory processes on the oscillations
and relative importance of individual regulatory pro-
cesses can be directly derived by the linear analysis
approach. The parameter sensitivity analysis needs
a large amount of computing, as shown in [2], while
the relative importance can be easily obtained by the
linear analysis approach, as shown in Fig.2(a). For in-
stance, the network shows a higher sensitivity toward
perturbations affecting external cAMP. It has shown
that constant high levels of external cAMP lead to at-
tenuation, whereas a brief pulse of cAMP can advance
or delay the phase such that interaction cells become
entrained [3]. The regulation of PKA inhibiting ERK2
enhances the robustness properties, although its role
in enhancing robustness is poor. The results show that
different regulatory mechanisms are of different impor-
tance for the robustness of the network.

From the Lyapunov’s indirect method, it follows
that local stability of an equilibrium can be deter-
mined from the linearization of the system around
the equilibrium. The system is locally unstable at the
equilibrium if its Jacobian has some eigenvalues in the
open right-half plane. Since oscillations can be traced
to destabilization of an underlying equilibrium, linear
stability analysis can be used to identify mechanisms
causing the oscillations by analyzing the destabiliz-
ing mechanisms of the underlying equilibrium. Linear
analysis, therefore, can also be used to determine the
mechanistic basis of the robustness property due to the
direct connection between robustness and functional-
ity.

3.1 Improvement of robustness

The PKA holoenzyme is composed of two tightly
bound regulatory subunits R and two catalytic sub-
units C. Different from the linear kinetics used in the
original model [3], we use second-order kinetics as an
approximation of the interactions of two molecules of
internal cAMP on each of the two regulatory subunits.
Thus, the rate of accumulation of the disassociated
catalytic subunit is proportional to the square of the
amount of internal cAMP. The catalytic subunits re-
bind with PKA independently, and hence their rate of
removal is assumed to be proportional to the amount
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Figure 2: The magnitude of the relative perturba-
tion |∆pq | required in element Lpq of the open-loop
model, i.e. the effect of component q on component
p in absence of feedback interactions, so stabilize the
closed-loop system, where x = [x1, · · · , x7] represents
the concentrations of the seven proteins: x1=[ACA],
x2=[PKA], x3=[ERK2], x4=[REG A], x5=[internal
cAMP], x7=[external cAMP], and x7=[CAR1]. (a)
At the nominal parameter values. (b) At k2 = 1.5
Mol−1min−1 and k3 = 1.6 min−1, all other parame-
ters at their nominal values.

of catalytic subunit present. The modified form of the
dynamics for PKA thus reads

d[PKA]/dt = k3[internal cAMP]
2
− k4[PKA]. (9)

Note that the changes in the mathematical description
capture the specific interactions between the internal
cAMP and PKA. Equation (9) and other equations in
Equations (8) except the second one define the struc-
ture of the modified model.

Still using the monotone control theory, we obtain
that the modification of the structural characteristics
does not change the number of equilibria. We still use
the two sets of parameter values, because the modified
model can produce similar oscillations at these values,
and obtain ωcrit = 1.0545 rad/min at the nominal pa-
rameter values. The perturbations required to stabi-
lize the underlying equilibrium for the modified model
at the same two sets of parameter values are shown in
Fig.3. We can see that the relative perturbations re-
quired are largely increased due to the modification of
the structural characteristics. A direct comparison of
Fig.2 and Fig.3 indicates that the slight modification
of the structural characteristics has a large impact on
the robustness property. Even the smallest perturba-



tion required for the modified model is greater than
the largest one for the original model.

For the original model, although the magnitude of
the perturbations at the second set of parameter values
is relatively larger than at the nominal ones, the order
keeps unchanged. Although the order changes due to
the parameter variations, the order of the most impor-
tant pairwise interactions corresponding to L2,5, L6,1,
L7,6, L5,1, and L1,2, which involve the components
ACA, PKA, REK2, internal cAMP, external cAMP,
and CAR1, does not change despite the parameter
variations. These components are instrumental to gen-
erate oscillations and relatively sensitive to perturba-
tions. The large difference between the magnitude of
the relative perturbations for the original and modified
models further confirms that the structural character-
istics is the major determining factor for robustness
properties, although sometimes parameter variations
can also have some contribution to them.
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Figure 3: The magnitude of the relative perturbations
|∆pq | required for the modified model. (a) At the nom-
inal parameter values. (b) At k2 = 1.5 Mol−1min−1

and k3 = 1.6 min−1, all other parameters at their
nominal values.

The improvement of robustness properties by the
modification of structural characteristics can be also
supported by single parameter robustness analysis.
The bifurcation points and degrees of robustness for
the modified model are also shown in Table 1. We
can see that all of them are largely increased due to
the the modification of structural characteristics. it
is clear that the single parameter intervals in which
stable oscillations occur are largely increased.

Table 1: Comparisons of DOR for the two models

P NV original model modified model
kl

i ku
i DOR kl

i ku
i DOR

k1 2.0 1.92 k1,max 0.04 0.64 28.22 0.68
k2 0.9 0.72 1.60 0.20 0.08 20.18 0.91
k3 2.5 k3,min 2.76 0.09 k3,min 38.96 0.94
k4 1.5 k4,min 1.58 0.05 k4,min 4.64 0.68
k5 0.6 0.54 k5,max 0.10 k5,min k5,max 1.00
k6 1.0 0.10 0.86 0.07 0.00 3.24 0.75
k7 1.0 k7,min 1.10 0.09 k7,min 9.64 0.90
k8 1.3 1.18 k8,max 0.09 0.34 k8,max 0.74
k9 0.3 0.60 0.32 0.06 k9,min 1.18 0.75
k10 0.8 0.00 0.88 0.09 k10,min 7.72 0.90
k11 0.7 0.68 k11,max 0.03 k11,min k11,max 1.00
k12 4.9 2.64 5.18 0.05 1.52 13.38 0.63
k13 23.0 22.22 k13,max 0.03 9.32 k13,max 0.59
k14 4.5 2.58 4.78 0.06 1.46 12.42 0.64

Remarks. (1): ki,min = 0 and ki,max = 90, i =
1, · · · , 14. (2): Abbreviations: P, parameters; NV,
nominal values. (3) DORi = 1 − max

{

pl
i/pi, pi/pu

i

}

,
stable limit cycles occur parameter range (pl

i, p
u
i ).

4 Conclusion

A linear analysis approach was proposed to study
the relative importance of components for robustness.
A modification scheme which captures the specific in-
teractions between the internal cAMP and PKA was
developed to enhance robustness.
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