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Abstract
Avian influenza H5N1 has caused large outbreaks

in birds in Southeast Asia. This virus is highly viru-
lent in humans who have been infected directly from
birds. But, the virus has not achieved human-to-
human transmission. If a new virus of bird flu ca-
pable of human-to-human transmission appears, this
change could cause pandemic influenza. We propose
the SEIR epidemic model of influenza transmission to
assess the influence of facility closure as a containment
strategy. Mathematical models are important tools in
analyzing the spread and control of infectious diseases.
If the fraction of infected individuals exceeds the set
threshold, we execute the facility closure for the set
period and there are assumed to be no transmission
among a population. If the basic reproduction num-
ber R0 was assumed to be 2.0, our model suggested
that it was not necessarily the case that long period of
facility closure reduced the prevalence. The final size
of an epidemic depended on the number of infected
individuals when the susceptible fraction was equal to
1/R0.

1 Introduction

The threat of pandemic influenza has increased for
decades [1]. H5N1 highly pathogenic avian influenza
is causing outbreaks among poultry in Southeast Asia.
The transmission from birds to human and other mam-
malian species has been sporadic. The virus has not
required the ability to be transmitted from human
to human. But, if mutation of the virus occurs, the
novel variant could be capable of sustaining human-to-
human transmission. Besides, pandemic influenza can
cause a public health crisis because many people are
immunologically naive to the new virus. Although an-
tiviral drugs offer protection against infection, produc-
tion delays would limit availability in the first months

of pandemic [2].
Influenza prevention and containment strategies

can be considered under the broad categories of antivi-
ral, vaccine, and nonpharmaceutical measures. In this
study, we focus on nonpharmaceutical measures, espe-
cially in the facility closure. For example, schools are
known to be the primary context of influenza transmis-
sion [3]. However, no data or analyses exist for recom-
mending illness thresholds or rates of change that lead
to considering closing or reopening schools [4].

The purpose of this study is to clarify the impact of
facility closure by changing the threshold or the dura-
tion of closure. Here we construct a simple epidemic
model of influenza transmission with deterministic dif-
ferential equations. Mathematical models and com-
puter simulations are useful tools for building and test-
ing theories, assessing quantitative conjectures, an-
swering specific questions, and determining sensitivi-
ties to changes in parameter values [5]. The model for-
mulation process clarifies assumptions, variables, and
parameters. We can use mathematical models in com-
paring, planning, implementing, and evaluating vari-
ous detection, prevention, and control programs.

2 Model and general theory

We use a mathematical model called the SEIR epi-
demic model, which is represented as follows:

dS

dt
= −βSI, (1)

dE

dt
= βSI − σE, (2)

dI

dt
= σE − γI, (3)

dR

dt
= γI. (4)



S(t), E(t), I(t), and R(t) are the number of suscep-
tible, exposed, infective, and recovered individuals,
respectively. This model is based on the Kermack-
McKendrick model [6].

The susceptible class S contains individuals who
have a risk of becoming infected. When there is a
contact of a susceptible with an infective so that trans-
mission occurs, the individual enters the exposed class
E in the latent period. An exposed individual is in-
fected but non-contagious. After the latent period, the
individual enters the infective class I in the infection
period. An infective individual is contagious, that is
capable of transmitting the infection. After the infec-
tion period, the individual enters the recovered class
R. A recovered individual is permanently immunity
to further infection.

Movements out of the class E and I are governed
by σE and γI, respectively. It is shown that these
terms correspond to exponentially distributed waiting
times. For example, the transfer rate γI corresponds
to P (t) = e−γt as the fraction that is still in the infec-
tive class t units after entering this class and to 1/γ
as the mean waiting time. We define the duration of
latent period and infection period as 1/σ and 1/γ.

The key value governing the time evolution of these
equations is the basic reproduction number R0, which
is defined as the mean number of secondary infections
generated by a primary infection in a susceptible pop-
ulation [7]. R0 for the SEIR model is given by

R0 =
βN

γ
, (5)

where N is the total number of individuals so that
N = S(t) + E(t) + I(t) + R(t). If R0 < 1, one in-
fected individual will infect fewer than one suscepti-
ble individual before recovering. The infection will
die out certainly. If R0 > 1, one infected individual
will infect more than one susceptible individual before
recovering. There is some possibility of a major epi-
demic. Therefore, R0 is considered as the threshold
that determines whether an infection can persist in a
population or not.

We propose the new epidemic model with facility
closure. If the proportion of infective individuals ex-
ceeds the threshold of closure θ, we assume that facil-
ities are closed for d days and that there is no trans-
mission among the people. The dynamics with closure
is represented as follows:

dS

dt
= 0, (6)

dE

dt
= −σE, (7)

dI

dt
= σE − γI, (8)

dR

dt
= γI. (9)

If the proportion of infective individual is less than the
threshold after the facility closure of d days, facilities
reopen and the transmission occurs again. The dy-
namics with or without closure follows equations (1)-
(4). Figure 1 shows the dynamics with or without
closure schematically.

Closed

Not Closed S E I R
β SI σ E γ I

S E I R
0 σ E γ I

Figure 1: The dynamics of the SEIR epidemic model
with or without closure

3 Results

We performed a numerical simulation to investigate
the dynamics of our epidemic model. As an initial
state, we set {S(0), E(0), I(0), R(0)} = {99, 1, 0, 0}.
Since recent estimates of the basic reproduction num-
ber of the 1918 pandemic strain were in the range 2-3
[8], we assumed that R0 = 2.0. We also assumed dis-
tributions of infectiousness consistent with previous
studies [9], giving mean latent and infection periods
of 1.9 days and 4.1 days, respectively. These assumed
parameters are shown in Table 1. We estimated the
value of β, σ, and γ from equation (5) and Table 1.

Table 1: Parameters for transmission
Parameters Description Value
R0 Basic reproduction number 2.0
1/σ Mean latent period 1.9
1/γ Mean infection period 4.1

Figure 2 shows the transition of the susceptible frac-
tion, exposed fraction, infective fraction, and the sum
of exposed and infective fraction without facility clo-
sure. The horizontal auxiliary line shows that the sus-
ceptible fraction is 0.5 and the vertical auxiliary one
shows the day when it is 0.5. Both the susceptible frac-
tion and infective fraction has the maximum on about
30th day. About 80% of a population is infected on
the 180th day.
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Figure 2: The transition of susceptible fraction, ex-
posed fraction, infective fraction, and the sum of ex-
posed and infective fraction without facility closure

Figure 3 shows the relation between the threshold of
closure and the prevalence, which is the proportion of
recovered individuals. We examined three parameters
for the duration of closure d, i.e. three, five, and seven
days. The prevalence doesn’t reduce monotonically
with reducing the threshold of closure regardless of the
closed period. Many of the long term closure reduce
the prevalence broadly if the threshold of closure is
fixed. But, there is a little possibility that the long
term closure produce somewhat high prevalence than
short term one.

Figure 4 shows the transition of susceptible fraction
and the sum of exposed and infective fraction with
facility closure for five days. Thresholds of closure θ
were assumed to be 0.06, 0.07, and 0.09. When the
threshold is 0.06, the facility closure is implemented
twice on the 20th and 40th day.
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Figure 3: The relation between the threshold of closure
and the prevalence

4 Discussion

Figure 2 represents that the number of exposed and
infective individuals reaches a peak on the 30th day.
After this time, the following formula is formed:

dE

dt
+

dI

dt
< 0. (10)

From equations (2), (3), and (5), we can obtain the
following formula:

S

N
<

1
R0

. (11)

This formula indicates that the number of exposed and
infective individuals start to reduce when the suscepti-
ble fraction is less than 1/R0. This threshold of reduc-
tion is 0.5 because we assumed that R0 = 2.0. This
analytical solution gives good agreement with experi-
mental results in Figure 2.

From equations (10) and (11), at least a half of a
population is infected in this model. Therefore, the
number of exposed and infected individuals when the
susceptible fraction is equal to 1/R0 is important value
to reduce the prevalence.

Figure 4 is an example of why zigzag lines are drawn
in Figure 3. First, the transition of the sum of exposed
and infective fraction achieves a peak twice when the
threshold of closure θ is 0.09 or 0.07. If the thresh-
old changes from 0.09 into 0.07, the sum of exposed
and infective fraction in the first peak is reduced but
in the second peak is increased. In the second peak,
both susceptible fraction is the same by 0.5, and more
prevalence is produced by more exposed and infective
individuals with θ = 0.07 than with θ = 0.09. Sec-
ond, if we reduce θ from 0.07 much further more, the
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Figure 4: The transition of susceptible fraction and
the sum of exposed and infective fraction with facility
closure for five days

transition of the sum of exposed and infective frac-
tion achieves a peak three times as θ = 0.06 in Fig-
ure 4. The sum of exposed and infective fraction with
θ = 0.06 is less in the third peak when the susceptible
fraction is equal to 0.5 than with θ = 0.07. These two
mechanism generate the zigzag line in Figure 3.

In this study, we reveal that the low prevalence is
generated by the small number of exposed and infec-
tive individuals when the susceptible fraction is equal
to 1/R0. However, since R0 of a future newly emer-
gent influenza strain is unknown, we can not change
the number of exposed and infective individuals pur-
posely. It seems to be the desirable measure to close
facilities at the low threshold and for a long term if at
all possible.

5 Conclusions

We propose the simple epidemic model based on the
SEIR epidemic model to explore the effect of facility

closure. Long period closure has the high possibility
to reduce the prevalence than short period closure.
However, there are some situations it is better to close
facilities for long period.
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