A New Technique for Adjusting the Learning Rate of RPEM Algorithm
Automatically

Xing-Ming Zhao?, Yiu-ming Cheung?®, Luonan Chen'?*, Kazuyuki Aihara'?
1. Aihara Complexity Modelling Project, ERATO, JST, Japan
2. Institute of Industrial Science, The University of Tokyo, Japan
3. Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
4. Department of Electrical Engineering and Electronics, Osaka Sangyo University, Japan

Abstract

Recently, a new Rival Penalized Expectation Maxi-
mization (RPEM) algorithm has been proposed for es-
timating the parameters of the normal mixture model,
meanwhile determining the number of classes auto-
matically. The RPEM is an adaptive algorithm uti-
lizing a small constant learning rate. To speed up its
convergence speed, this paper proposes a new method
to dynamically adjust the learning rate of the RPEM
algorithm on line. The numerical results have shown
the promising results of the proposed algorithm.

1 Introduction

Mixture models have been widely used in data min-
ing [1], image processing [2], gene expression analysis
[3], and so forth. In the literature, the Expectation-
Maximization (EM) algorithm [4] has been widely
used to estimate the parameters of the normal mix-
ture model, which, however, needs to pre-assign class
number. Generally, the EM algorithm almost always
leads to a poor result if the class number is not ap-
propriately pre-assigned. Recently, a new Rival Pe-
nalized Expectation-Maximization (RPEM) algorithm
was proposed by Cheung [2] [5]. The RPEM algo-
rithm can determine the number of classes automat-
ically by gradually fading out the redundant compo-
nents from the mixture during the parameter learning
process. In [2] [5], the RPEM utilizes a small constant
learning rate to ensure the algorithm’s convergence,
which, however, needs more iteration steps. Indeed,
we can dynamically adjust the learning rates to speed
up the performance convergence of the RPEM. In this
paper, we present a new method accordingly for such
a task. Hereinafter, we denote the RPEM algorithm
with dynamic adjustment of learning rate as RPEM-
DLR algorithm.

2 The RPEM-DLR Algorithm

The mixture model assumes that each group of data
is generated by an underlying probability distribution.
Suppose the number of classes is k, and the number
of samples is N. In the RPEM algorithm, the likeli-
hood function for a mixture model can be defined in
a weighted form, i.e.,

k

@) = [3" g(ilx O)lup(x@)dF(x), (1)
with
k
p(x1©) = 3" asp(xlty) @
k
Zaj:1,v1gjgk,aj>o, (3)
and
k
Zg(ﬂX’@) =1, (4)

where ©® = {aj,ej}é?:l is the set of model parame-
ters, F'(x) is the cumulative probability function of x,
p(x]6;) is a multivariate probability density function
(pdf) of x, a; is the proportion that x comes from
Class 7, and gs are designable weights. The details
can be found in [5].

The RPEM algorithm in normal mixture models
can be summarized as follows:

e Initialization: Given a specific k (k > k*, k* is
the true class number), we initialize ©. Then, at
each time step ¢, we implement the following two
steps:

e Step 1: Fixing @Y calculate h(j|x;, @),
g(j|x¢, ®H)) and oz;Old), where

(old) eXp(ﬁj(-Old))
R Ap— (old)\ " ()
iz exp(3;7)

e Step 2: Fixing h(j|x;, ®©D)s update @

new old . o old
B = D 4 g(lxe, ©CD) — o], (6)
e = D g (e, @Y E T (5, — (1D

(7)

1 = L4 mag (i, @)
—129(j|x:, @)U,
where Uy, _ [Ej—l(old)(xt _ N;old))(xt _

M§Old))TE;1(Old)], n1 and 17 are small positive
learning rates with 173 <« 72 < 1. The procedure
repeat until ® converges.

In RPEM algorithm, it can be seen that the learning
rate is generally a fixed small positive constant. Actu-
ally, the choice of the learning rate can affect the con-
vergence performance of the RPEM. In general, there
is a tradeoff between the residue deviation and rate of
convergence [6]. When using a fixed learning rate, it
should be small enough for the algorithm to converge.
The smaller the learning rate, the smaller the residue
deviation, but the slower the convergence speed. It is
usually difficult to determine an optimal learning rate
in advance because it is problem dependent.

According to the condition for the asymptotic con-
vergence provided by a standard theorem [7] from
stochastic approximation theory, the learning rate
should satisfies:

o0
Jim n(it) =0, and tzl n(it) = oo, (8)
it—
where it is the it-th epoch. Under the circumstances,
we propose a new method here for adjusting the learn-
ing rate dynamically. The learning rate is defined as:

1 —a(j)
1+ a(j)’
1<j<k,and1 < it < oo,

n(j,it) = n(j,it — 1) *

where 7(j,4t) is the learning rate for the j-th compo-
nent in the 7¢-th epoch, and «; is the proportion that
x comes from Class j. The initial learning rate 7g is
set at a fixed small positive constant. Therefore, the
learning rate will be adjusted dynamically according
to a; in each epoch.

3 Experimental Results and Discus-
sions

In this section, two sets of data were used to inves-
tigate the performance of the RPEM-DLR algorithm.
First, we generated 1,000 synthetic data points from
a mixture of three bivariate Gaussian densities:

1 0.10 0.05
Plx|®) = O'3G[X< 1 >(0.05 0.20 >}
1.0 0.10 0.0
+0'4G[X|< 5.0)(0.0 0.10)]
5.0 0.10 —0.05
+0'3G[X|(5.0)(~0.05 0.10)1'
Suppose the number of seed points was set k = 10
and k = 20, respectively. We initialized each of X;s
to be an identity matrix, and all 3;s to be zero. The
initial learning rate 1y was set at 0.01. With the same
initial parameters, the performance of the RPEM-
DLR algorithm was compared to that of the RPEM
algorithm. The results obtained by RPEM-DLR and
RPEM are shown in Figure 1, where the points marked
by ‘4’ are the learned cluster centers via RPEM-DLR
and EM, respectively. As shown in Figure 1, both
the RPEM algorithm and RPEM-DLR can locate the
cluster centers correctly by pushing away the redun-

dant seed points when the pre-assigned class number
is larger than the true mixture number, i.e., kK = 3.

Positions of the 10 seed points learned by RPEM Positions of the 20 seed points learned by RPEM

S ¥

0 2 4 6 8 0 2 4 6 8

[$))
[$))

Positions of the 10 seed points learned by RPEM-DLR Positions of the 20 seed points learned by RPEM-DI

10 10

=]
]

[$))

. =+ ,
ot e

0 2 4 6 8 0 2 4 6 8

Figure 1: Convergent positions of the seed points
learned via RPEM and RPEM-DLR for the data gen-
erated by pl.

Furthermore, we investigated the computation time
taken by RPEM and RPEM-DLR algorithm during
the learning procedure. The number of the seed points
was set at 5, 10, 20 and 30, respectively. Table 1

Table 1: The comparison of computation time of
RPEM and RPEM-DLR (seconds)

number of methods
seed points RPEM RPEM-DLR
5 101.5961 11.1861
10 239.0037 33.9889
20 402.2885 112.7221
30 1.0397e+-003 225.6845
0.01 0.01
0.005 0.005
7% 10 15 20 25 %70 20 30 40 50
5 seed points 10 seed points
0.01 0.01
0.005 0.005
% 40 60 s 10 ° 50 100 150

20 seed points 30 seed points
Figure 2: Learning curves of 7;s via RPEM-DLR for
the data generated by pl

shows the comparison of the computation time by
RPEM and RPEM-DLR under the same conditions.
As shown in Table 1, the computation time taken
by RPEM-DLR is much less than that of the RPEM
algorithm, i.e. our proposed RPEM-DLR algorithm
largely reduces the calculation time. In a word, our
proposed RPEM-DLR algorithm is really efficient, and
speeds up the learning of the RPEM technique.

We further investigated the corresponding values of
7;5 learned via RPEM-DLR when the number of seed
points was set at 5, 10, 20 and 30, respectively. As
shown in Figure 2, the values of 7;s corresponding to
the extra seed points approached to zero slower than
those of the true ones, which was reasonable because
the learning rate was a monotonously dropping func-
tion of ajs. It can seen from Figure 2 that the learn-
ing rate was adjusted dynamically during the learning
procedure, which speed up the learning of the RPEM.

Upon the data clusters well-separated above, we
further investigated the performance of the RPEM-
DLR algorithm on the data clusters that were consid-
erably overlapped. We generated 1,000 synthetic data
points from a mixture of three bivariate Gaussian den-
sities:

1 0.15 0.05
P2(x|®) = 03G[X|(1)’(0.05 0.20)]
1.0 0.15 0.0
+0.4G x| (25 >< 0.0 0.15 >]
25 0.15 —0.1
+0.3G[x| (25 >< —0.1 0.15 >]

The number of seed points was set at 10 and 20,
respectively. We initialized each of 3;s to be an iden-
tity matrix, and all 8;s to be zero. The initial learn-
ing rate ng was set at 0.01. Again, The performance
of the RPEM-DLR algorithm was compared to that of
the RPEM algorithm. The results obtained by RPEM-
DLR and RPEM are shown in Figure 3. It can be seen
from Figure 3 that both the RPEM and RPEM-DLR
algorithm can stabilize at the corresponding cluster
centers when the number of seed points is larger than
the true mixture number.

Positions of the 10 seed points learned by RPEM Positions of the 20 seed points learned by RPEM

6 g1
4 + + 4
2 T8 2
0 0
_2 -2
=l 0 2 4 6 2 0 2 4 6
Positions of the 10 seed points learned by RPEM-DLR Positions of the 20 seed points learned by RPEM-DLR
6 6
4 4
2 2
0 0
-2 -2
ey 0 2 4 6 2 0 2 4 6

Figure 3: Convergent positions of the seed points
learned via RPEM and RPEM-DLR for the data gen-
erated by p2.

The computation time taken by RPEM was com-
pared to that of the RPEM-DLR algorithm during the
learning procedure. The number of the seed points was
set at 5, 10, 20 and 30, respectively. Table 2 shows the
comparison of the computation time by RPEM and
RPEM-DLR under the same conditions. As shown in
Table 2, the computation time taken by RPEM-DLR
is much less than that of the RPEM algorithm, which
shows again that our proposed RPEM-DLR algorithm
can adjust the learning rate dynamically and speed up
the learning of RPEM.

Furthermore, Figure 4 shows the learning curves of
7,5 when the number of seed points was set at 5, 10, 20

Table 2: The comparison of computation time of
RPEM and RPEM-DLR (seconds)
number of methods
seed points RPEM RPEM-DLR
5 124.5791 9.3735
10 152.4893 25.9974
20 486.4795 111.0196
30 1.0870e+4-003 266.6434
0.01 0.01
0.005 0.005
% 10 20 0 % 20 40 60
5 seed points 10 seed points
0.01 0.01
0.005 0.005
% 50 100 % 50 100 150

20 seed points 30 seed points
Figure 4: Learning curves of 7;s via RPEM-DLR for
the data generated by p2

and 30, respectively. As shown in Figure 4, the learn-
ing rates changed as we expected, and the RPEM-
DLR technique can adjust the learning rate dynami-
cally in the learning procedure. It can be concluded
from the above experiments that the RPEM-DLR al-
gorithm outperforms RPEM in terms of computation
time, and adjusts its learning rate dynamically in the
learning procedure.

4 Conclusions

This paper proposed a new method to dynamically
adjust the learning rate of RPEM algorithm. Com-
pared to the constant learning rate as used in the
RPEM algorithm, our proposed method can efficiently
speed up the performance convergence of RPEM algo-
rithm. The numerical results have demonstrated its
efficacy.

Acknowledgment

This work was partially supported by the Research
Grant Council of Hong Kong SAR under Projects
HKBU 2156/04E, HKBU 210306, and by Faculty Re-
search Grant of Hong Kong Baptist University with
the Project Code: FRG/05-06/11-42.

References

[1] X. F. Zhang, C. M. Lam, and W. K. Cheung,
“Mining Local Data Sources for Learning Global
Cluster Models via Local Model Exchange,” The
IEEE Intelligent Informatics Bulletin, vol. 4, pp.
16-22, 2004.

[2] Y. M. Cheung, “A rival penalized em algo-
rithm towards maximizing weighted likelihood
for density mixture clustering with automatic
model selection,” in Proceedings of the 17th
International Conference on Pattern Recognition
(ICPR’04). United Kingdom: Cambridge, 2004,
pp. 633-636.

[3] X. F. Zhang, C. M. Lam, and W. K. Cheung,
“Mining Local Data Sources for Learning Global
Cluster Models via Local Model Exchange,” The
IEEE Intelligent Informatics Bulletin, vol. 4, pp.
16-22, 2004.

[4] A. Dempster, N. Laird, and D. Rubin, “Maxi-
mum likelihood from incomplete data via the em
algorithm,” J. Roy. Stat. Soc., vol. B39, pp. 1-38,
1977.

[5] Y. M. Cheung, “Maximum weighted likelihood
via rival penalized em for density mixture clus-
tering with automatic model selection,” IEEE

Transactions on Knowledge and Data Engineer-
ing, vol. 17, no. 6, pp. 750-761, June 2005.

[6] C. Chinrungrueng and C. H. Sequin, “Optimal
adaptive k-means algorithm with dynamic ad-
justment of learning rate,” IEEE Transaction on
Neural Networks, vol. 6, no. 1, pp. 157-169, 1995.

[7] A. Dvoretzky, “On stochastic approximation,”
in Proc. 8rd Berkeley Sym. on Math. Stat. and
Prob., J. Neyman, Ed.

