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Abstract

Silicon neuron is electrical circuit that is analogous
to biological neurons. Most spiking silicon neurons
comprise analog circuit technology. We propose a new
concept of spiking silicon neuron that is composed of
only digital circuit technology. The system equations
were designed by a mathematical-model-based design
method that we proposed for analog silicon neurons
in previous works. This allowed us to design a simple
digital spiking silicon neuron (DSSN) model that pro-
duces rich dynamical behaviors comparable to biolog-
ical neurons. We analyzed an elemental DSSN model
to validate if it possesses fundamental characteristics
of neurons, and its behaviors in gap junction (GJ)-
coupled networks were studied in order to demonstrate
its ability to exhibit rich dynamical behaviors.

1 Introduction

Silicon neuron study is an attempt to produce neu-
ron analog utilizing electrical circuit technology. One
of its objectives is to construct artificial silicon neural
networks that process information similarly to neural
systems in creatures. Although knowledge on the in-
formation processing principles in neural systems is
inadequate, silicon neuron and neural networks are
being studied actively. This is not only because of
some realistic potential applications such as associa-
tive memory and brain-machine interfacing, but also
because analysis by synthesis is one of the most ef-
fective tools for brain science. Many silicon neurons
have been constructed using analog electrical circuit
technology, because neural phenomena are produced
by real-valued dynamics. Conventionally, in the ana-
log silicon neuron design trade-off between the circuit
size and richness of neuronal properties has been a dis-
advantage. In the previous works [1][2], we proposed
a mathematical-model-based design policy that allows
us to implement a compact silicon neuron that pos-
sesses rich neuronal dynamics.

For silicon neurons, digital circuit technology has
not been applied as extensively as analog technol-

ogy. However, it has some appealing features such
as insensitivity to the fluctuations in the environ-
ment and continuous improvement in the fabrication
technology. Additionally, field programmable gate
arrays (FPGAs) allow users to construct their own
ICs. Currently, most digital silicon neurons and neu-
ral networks are dedicated processors for classical non-
spiking neuron models and network models or simula-
tors for spiking neuron models [3][4]. In this paper,
we propose a new concept for digital silicon neuron
design. By applying a mathematical-model-based de-
sign policy to digital circuits, we can design a digital
spiking silicon neuron (DSSN) that possesses prop-
erties supported by theoretical models for biological
neurons with compact circuitry. It is intended to be a
constituent element for digital spiking neural networks
that operate in real time, and has the potential to be
an alternative to analog silicon neurons.

In the next section, we introduce the concept and
design a model for an elemental DSSN model. In the
third section, we report complex behaviors observed
in a GJ-coupled network of the model to demonstrate
that it has potential to exhibit rich dynamical behav-
iors comparable to analog silicon neurons. Finally, we
will briefly refer to the implementation of our model.

2 Concept and Model of DSSN

The basic concept of DSSN is a dedicated system for
solving differential equations of spiking neuron mod-
els. The hardware is an ordinary arithmetic circuit
used for numerical integration. The keypoint lies in
the designation of system equations. To implement
a solver for a biological neuron model, massive hard-
ware resources are required because most of the models
are described using complex differential equations. We
can avoid this problem by designing the system equa-
tions by a mathematical-model-based design method.
Here, equations that have topological structures in
their phase portrait similar to some theoretical mod-
els are designed first, and then, their parameters are
tuned on the basis of bifurcation analysis.



The most fundamental property of biological neu-
rons is the generation of action potentials. Neural
excitability is another property, which classifies neu-
rons according to the firing frequency at the onset of
repetitive firing induced by a sustained stimulus that
is increased gradually. Neurons with Class I excitabil-
ity begin to fire repetitively with arbitrarily zero fre-
quency, whereas those with Class II excitability begin
with a non-zero frequency. Theoretical studies have
elucidated the mathematical structure behind these
properties by utilizing the phase portrait and bifurca-
tion analyses [5][6]. These studies not only succeeded
in explaining the mechanism of various properties of
action potentials but also showed that saddle-node on
invariant circle and Hopf bifurcations of a stable equi-
librium corresponding to a resting state produce Class
I and II excitabilities, respectively.

Based on the above mentioned information, we de-
signed a model for elemental DSSN, whose equations
are:
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Parameters a;, by, ¢y, ki, Dz, @z, and 7 determine
the form of the nullclines, and ¢ and 7 are time con-
stant parameters (for £ = n and p). These equations
were designed so that they could reproduce topologi-
cal structures in the phase plane of the Morris-Lecar
model [7]. It is one of the simplest models that show
both Class I and II excitabilities depending on pa-
rameter sets. In our equations, multiplication oper-
ations between variables are significantly reduced be-
cause they consume large hardware resources (cubic
curve is constructed by two quadratic curves). Note
that multiplication between a parameter and a vari-
able can be implemented by the shift operation if we
select the parameter from {2"|n € Z}.

We selected the parameter values so that our model
reproduced the phase plane structure in the Morris-
Lecar model in the Class I and IT modes (see Appendix
for values). In Fig. 1 (a), (b), and (c), the phase
planes for Class I and II modes of our DSSN model
are shown. These topological structures in the phase
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Figure 1: Phase planes for our DSSN model. (a) Null-
clines for Class I, II, and I* modes. (b), (c), and
(d) Closeup around critical structures for Class I, II,
and I* modes, respectively. (S) is a stable equilib-
rium (resting state); (T), a saddle; and (U), an un-
stable equilibrium. Stimulus current (Isz,) shifts the
v-nullcline up, resulting in repetitive oscillation. In
the Class I* mode, v- and n-nullclines are very close
to each other (narrow channel) around v = —0.4.
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Figure 2: Bgﬁ)lrcations in our DSSN n(lo)del. (a), (b),
and (c) Bifurcation of variable v. Limit cycles are
represented by the maximum and minimum values.
(d) Bifurcation of frequency for limit cycles.

plane were proved to exhibit fundamental properties
of action potentials by theoretical studies [5]. By se-
lecting the descending limb of the n-nullcline, we can
select the neural excitability classes. Fig. 2 (a), (b),
and (d) show the results of the bifurcation analysis.
They confirmed that our parameter sets produced the
expected classes of excitability. Additionally, in the
Class IT mode, our DSSN model produced chaotic re-



sponses against repetitive pulse stimuli similar to those
in biological neurons [8] and an analog silicon neuron
[1]. This indicates the potential of our DSSN model
to exhibit rich dynamical behavior.

3 GJ-coupled DSSN models

A gap junction (GJ) is a type of physical connection
between neuronal cells, which is electrically equivalent
to linear resistance. Various regions in the brain are
known to contain numerous GJs, whose functions have
attracted considerable interest from many researchers.
In 2004, Fujii and Tsuda [9] found that some of Class
I neuron models exhibited characteristic chaotic be-
haviors when interconnected via GJs. They classified
these neuron models as Class I* and indicated that
the following two conditions in phase plane structures
supported this class. The first condition is the exis-
tence of a phase plane structure called narrow channel,
which means that the nullclines for the membrane and
ionic conductance variables remain close to each other
in certain regions. The second one requires the unique
crosspoint of the above two nullclines to be an unsta-
ble spiral equilibrium. These conditions are satisfied
when a weak stimulus current is given to a neuron
model with nullclines having specific shapes. In Fig.
1 (a) and (d), we show the phase planes for our DSSN
model in the Class I* mode (see Appendix for the pa-
rameter set). A narrow channel is formed in the region
shown by the dashed square, when I, = 0.015. Bi-
furcation analysis demonstrated that our DSSN model
belonged to Class I in this mode (Fig. 2 (c) and (d)).

We calculated the maximum lyapunov exponent for
the GJ-coupled network of DSSN models to demon-
strate that our model with this parameter setting
could operate as a Class I* neuron. This network is
composed of a one-dimensional array of 20 DSSN mod-
els interconnected with two nearest neighbors via GJs
(see Fig. 3). The current through GJ applied to the
i-th DSSN model (I};) is given as follows:

I;j = (Vig1 + vi—1 — 2v;)/ Ry;, (5)

where 7 is the index number for DSSN model (from
1 to 20); v;, v for the i-th DSSN model (v = v; and
V21 = vg0); and Ry, the resistance of the GJ. These
currents are added to Iy, for each neuron. In Fig.
4 (a), the maximum lyapunov exponents for the Class
I, II, and I* modes are shown. It is large in the Class
I* mode when Ry; is approximately between 2.5 and
20, whereas it is approximately zero, independent of
Rg; in the Class I and II modes. In the Class I* mode,
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Figure 3: One dimensional GJ-coupled network.
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Figure 4: Behaviors of a GJ-coupled network of 20
DSSN models. (a) Maximum lyapunov exponents in
Class I, II, and I* modes. Large values are obtained
only in the Class I* mode. (b) and (¢) Superimposed
waveforms for v in the Class I* mode when Rg; is 10
and 19.5, respectively. Intermittently chaotic behav-
ior is observed when Ry; in (c), when the maximum
lyapunov exponent is relatively small.

the network is synchronous when Rg; is sufficiently
small, becomes chaotic (Fig. 4 (b)) as R,; increases,
and then returns to the synchronous state when R is
sufficiently large. We observed intermittently chaotic
behaviors for the R,; values during the transition from
the chaotic to synchronous states (Fig. 4 (c)). These
behaviors are consistent with that of an analog silicon
neuron model we designed in the previous work [10].

4 Concluding remark

In the previous sections, we proposed a DSSN
model and indicated that it has potential to reproduce
the fundamental characteristics of neurons. We also
showed that our model could exhibit complex behav-
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Figure 5: Behaviors of a GJ-coupled network of 20
DSSNs. (a) Rg; = 10. (b) Ry; = 19.5. Numerical in-
tegration was performed by Euler’s method and preci-
sion was 28 bit fixed-point. Chaotic and intermittently
chaotic behavior that are consistent with model simu-
lation (Fig. 4 (b) and (c)) were observed.

ior with monotonic stimulus in GJ-coupled networks.

We are planning to implement our DSSN model in
FPGA devices and are performing numerical simula-
tions. Reasonable results are obtained when we select
Euler’s method and fixed-point expressions for numer-
ical integration. For example, we observe complex be-
haviors in the Class II mode of the DSSN model when
it is stimulated repetitively (not shown), and chaotic
and intermittently chaotic behaviors in a GJ-coupled
network of 20 DSSNs (Fig. 5) that is consistent with
the accurate simulation of the model. These results
are obtained with a time step of 1.07° for Eular’s
method and 28 bit fixed-point expression. Numerical
precision is an important factor that affects the circuit
size and operation speed. However, it is quite a diffi-
cult problem to give objective criteria for determining
the required precision. This is because interconnected
neurons and even a single neuron are complex systems
and the assessment of their dynamical behavior is a
complicated subject.

For the implementation of a digital spiking silicon
neural network, a silicon synapse circuit is required.
We will design this circuit in the near future by using a
mathematical-model-based method referring to kinetic
models for biological synapses.
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Appendix
A Common parameters:
Par.  Value | Par. Value | Par. Value
an 8.0 b, 025 cn 05
ap 8.0 by 025 05
ky  16.0 pp 02125 | ¢,  —0.6875

B Class I parameters:
Par. Value |Par. Value | Par. Value

kn 2.0 pn 0.3 an -0.705
¢ 1.0 T 0.003 T -0.2
Iy -0.205

C Class II parameters:
Par. Value | Par. Value | Par. Value

kn 4.0 pn 055 | gqn -1.205
¢ 06 r 0003 | r 01
I, 024

D Class I* parameters:
Par. Value | Par. Value | Par. Value

kn 4.0 pn 0.1 gn _ 0.755
1) 0.6 T 0.002 r -0.25
In -0.25



