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Abstract

Recent physiological studies show a transient syn-
chrony which means an alteration behaviour between
synchronous and desynchronous states. These exper-
imental findings and related theoretical studies have
suggested that the importance of this kind of dynamics
as bases of cognitive functions. However, an origin of
this characteristic dynamics is still unclear. Here, we
report that the transient activity can be realized in the
network consisted of conductance-based model neu-
rons with a bistability of firing and non-firing states.
Neurons in this network are coupled with gap junc-
tions which is a direct electrical connection with neigh-
bor neurons. The bistability of the neuron play a key
role to produce the transient dynamics of synchronous
and desynchronous states.
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1 Introduction

Recent experiments have revealed the transient
dynamics between synchronous and desynchronous
states, e.g., spiking patterns observed in rat inferior
olive neurons show the alteration of rhythmic syn-
chronous states and desynchronous states [1] , local
field potential (LFP) data of an animal and electro en-
cephalography (EEG) data of human [3] also exhibit
the transient synchronous activity. Further, functions
of this kind of dynamics have been investigated. The
transient dynamics correlates with an attention and
a perceptual binding, facilitates a synaptic plasticity,
and coordinates a long-range interaction in the brain

[2, 3] . Theoretical study have suggested that neural
codes switch dynamically along with the state tran-
sition [4]. Little is known, however, about how the
transient activity emerges in the neural systems.

Moreover, experiments have revealed the massive
number of gap junctions in various region of the brain.
These gap junctions are specialized areas of the cell
membranes connecting neighbor cells; they induce syn-
chronous firing [5]. In addition to the synchronous ac-
tivity, theoretical studies suggest that gap junctions
induce chaotic activities including the chaotic itiner-
ancy [6, 7] . The chaotic itinerancy is one of possible
scenarios to realize the transient dynamics between
synchronous and desynchronous states in the network
with gap junctions.

The purpose of this paper is to present an alterna-
tive scenario to produces the transient dynamics in the
gap junction-coupled neural system, base on a charac-
terization of the bistability of neuron. The paper is
organized as following. First, in the next section, we
show the conductance-based model with the bistabil-
ity and a characteristics of their behaviours. After
that, we construct the network with this neuron by
connecting with gap junctions. In the third section,
we show the result of computer simulation.

2 Model

Here, we describe the model mentioned in above.
First, single neuron model is described in following
subsection. After that, we construct the network con-
sisted of this neuron and gap junctions.



2.1 Conductance based model with bista-
bility

We used a simple two-variable conductance-based
model, which is more plausible than a one-variable
neuron model like the integrate-and-fire model, and
is extracting the essential neural dynamics. [6, 8].

This model consists of two variables which are a
membrane potential V and a potassium channel acti-
vation n [8].

C
dV

dt
= I(t) − gL(V − EL)

−gNa(V − ENa)
−gK(V − EK), (1)

τn
dn

dt
= n∞(V ) − n, (2)

m∞(V ) =
1

1 + exp
[

V1−V
V2

] , (3)

n∞(V ) =
1

1 + exp
[

V3−V
V4

] . (4)

The neuron is driven by the external input I(t), the
leaky current, the sodium current, and the potassium
current. We chose following parameters to realize the
bistable structure. We set C = 31ms, τn = 31ms, the
membrane conductances gL = 1, gNa = 4, gK = 4,
and corresponding reversal potentials EL = −78 mV,
ENa = 60 mV, EK = −90 mV. We use steady-state
activation curves m∞(V ), and n∞(V ) with the slope
factor V2 = 7mV, V4 = 5mV and parameters V1 = −30
mV and V3 = −45 mV satisfy m∞(V1) = n∞(V3) =
0.5.

Figure 1 shows the phase portrait to describes the
geometric view of the model neuron. The model in-
cludes two attractors as shown in this figure. The first
is a stable fixed point corresponding to the rest state.
The other is a stable limit cycle with the action poten-
tial. The dashed curve in figure 1 indicates a unstable
limit cycle. If the orbit starts inside of this region, the
orbit converges to the stable fixed point. On the other
hand, If the orbit starts outside of this region, the orbit
makes the action potential and converges to the stable
limit cycle. Figure 2 shows a time course of the mem-
brane potential as a typical response of the neuron.
This neuron takes two states of firing and non-firing
even on same intensity inputs. These two states can
be switched by fluctuating inputs (Fig 2 (b)).
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Figure 1: Phase portrait of the model neuron. Dotted
curves indicate nullcline of V and n. The bold curve
is the stable limit cycle. The point in the crossing of
these nullclines is the stable fixed point. The dashed
curve is unstable limit cycle. Curves with arrow indi-
cate typical orbits of the model.

2.2 Network with gap junctions

The network with gap junctions and neurons spec-
ified in above is described as follows. We used two
dimensional lattice network with 25 neurons as in fig-
ure 3.

C
dVi

dt
= Ii(t) − gL(Vi − EL)

−gNa(Vi − ENa)
−gK(Vi − EK), (5)

τn
dni

dt
= n∞(Vi) − ni, (6)

(i = 1, · · · , 25),

m∞(V ) =
1

1 + exp
[

V1−V
V2

] , (7)

n∞(V ) =
1

1 + exp
[

V3−V
V4

] , (8)

The i in the subscript of V , n, and I(t) indicates
the index of neurons. We used 25 neurons in this net-
work, therefore, the i takes an integer of from 1 to 25.
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Figure 2: The typical response of the conductance-
based model with bistable structure. The time course
of the membrane potential (a) and the fluctuating in-
put (b) are shown. The firing state as in the middle
part of (a) and the rest states as in the both end of
(a)are corresponding to the stable limit cycle and the
stable fixed point in figure 1 respectively. These two
states can be switched by the fluctuating input.

Ii(t) is a current induced by external inputs and gap
junctions, and is consisted of three terms:

Ii(t) = I0 + ξi(t)

+gE

neighbors∑
j

(Vj(t) − Vi(t)). (9)

The first term I0 specify a constant input. The sec-
ond term is a Gaussian noise ξi(t) that is individually
applied to each neuron with the strength D. The third
is the current induced by the gap junction with the
conductance gE . Each neuron coupled with nearest
neurons as in figure 3. We assumed the conductance
gE are uniform for all gap junction connections.

3 Simulation Results

Figure 4 shows the typical response of this model.
We can observe the transient activity between syn-
chronous and desynchronous states. In the syn-
chronous states, we can also see the rhythmic firing
with a period of about 180 ms. The period is cor-
responding to the period of the stable limit cycle of
the neuron. In the desynchronous states, the firing
frequency is low and that spike timing are almost ir-
regular.

Figure 3: The structure of the network. The network
is consisted of 25 neurons described in the body of this
paper. Each neuron is connected with nearest neurons.
The coupling strength of gap junction are uniform and
specified by gE .

The key mechanism of the alteration of these two
states originate in the bistability of the conductance-
based model as you see in the figure 1. The orbit
of each neuron coupled with gap junctions attracts
each other. Consequently, the orbits of these neurons
tend to stay in one side of two attractors. In the syn-
chronous states, the orbits stay on the stable limit cy-
cle. In the desynchronous states, almost of these orbits
trap each other near the stable fixed point. The fluctu-
ating noise allows to escapes from this region and make
the desynchronous spiking. If a certain amount of neu-
rons fire in short time period, the state can change to
the synchronous state.

4 Conclusion

In this paper, we have shown that the transient dy-
namics of synchronous and desynchronous states can
be realized in the network consisted of bistabe type
neurons and gap junction connections.

The model examined here may play an important
role for the information coding in the brain , and cog-
nitive roles mentioned in the introduction.
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