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Abstract
The prefrontal cortex is involved in a lot of complex

cognitive behaviours, such as problem solving, plan-
ning, reasoning, and decision making. However, the
biological mechanisms of these computations are not
clear. To understand the mechanisms, we theoretically
consider the experimental result of path-planning task
by Mushiake et al., using a mathematical model which
we name the potential network model. The result of
simulations shows that our model is able to take a cor-
rect path in most trials regardless of goal positions and
block patterns. Our model also reproduces the char-
acteristics of neurons’ activities both in the prefrontal
cortex and the primary motor cortex. This study in-
dicates that although the potential network model is
abstract, it can be useful for modelling higher brain
functions.

1 Introduction

Planning is one of the most complex cognitive func-
tions of human brain. It includes a lot of aspects, such
as selection of future actions, anticipation of future
events that will occur as a result of those actions, tem-
poral maintenance of sequence of those events, evalu-
ation of the sequence, generation of new strategy if
needed, and memorisation of finally decided plan so
that the planner will take actions according to the
plan. Planning is also related to some major prob-
lems about brain, such as working memory,1 cognitive
control,2 mental imagery,3 and reward systems.4

A lot of studies from neuropsychology and brain
imaging show that planning is related to the prefrontal
cortex (PFC).5,6 The PFC has thought to be involved
in the executive control of behaviour, and planning is
an important aspect of the executive control. Here the
question arises: what role does the PFC take during
planning of multistep behaviours?

To answer this question, we made a mathematical
model of a path-planning task. The path-planning
task was a task that required multiple stepwise move-
ments of a cursor within a maze to reach a goal.7–9 Fig.
1 shows the maze used in the task. Players of this task
started from the centre of the maze and tried to reach
the goal avoiding obstacles. If the player of the task
was monkey, it moved its arm to move around in the
maze. If the player was human, the player pushed but-
tons. The rule which assigned muscular-movements to
cursor-movements was replaced for every several trials.
By recording of neuron spikes in monkeys’ brains, it
was shown that many PFC neurons selectively fired
when specific cursor-movement was on specific step
during both the preparatory period and movement ex-
ecution.7
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Fig. 1. Path-planning task

On the other hand, Bachmann et al.10 proposed
a mathematically abstract model of neural network.
They considered a firing pattern of Hopfield network
as a point in high dimensional state space, and at-
tractors as points in the space. This model had no
spurious attractors. Furthermore, basins of attractors
were well-defined. In this paper, we connected simpli-
fied neural assemblies similar to Bachmann’s model,
considered interactions among them, and named it the
potential network model.



2 Potential network model

The potential network model is a network model
where each node changes its state continuously accord-
ing to its potential. The potential is influenced by con-
nected nodes. Suppose a network consists of N nodes.
Each node has a state xi(t) ∈ Rm(i = 1, · · · , N) and
a potential Ui(i = 1, · · · , N). The state of each node
is changing on the potential.

dxi(t)
dt

= −α∇Ui(t) (i = 1, · · · , N).

Each node has several fixed points s1
i , · · · , sLi

i ∈
Rm(i = 1, · · · , N). These points are called attrac-
tors because they could be local minimum potentials.
Fig. 2 shows an example. When node A’s state is near
enough to one of its attractors, then the node affects
next node B’s potential so that one of attractors in
node B gets stable. For simplicity, each node’s poten-
tial is formed by linear summation of all attractors of
connected nodes.

Uj(t) =
∑

i∈Pj

Li∑

k=1

f(xi, s
k
i )Uk

ij (j = 1, · · · , N).

Here Uk
ij is the potential from k-th attractor of i-th

node to j-th node and Pj is a set of nodes connected
to j-th node.

f is a closeness function. It is a function of distance
between the state of the node and each attractor. In
this paper, we use Gaussian function as the closeness
function.

f(xi, s
k
i ) = β exp

(
−‖xi − sk

i ‖2
σ2

)
.

3 Simulations of path-planning task

3.1 Setup of simulations

We constructed a potential network model for the
path-planning task (Fig. 3). We assumed that cursor-
movements for three steps were represented separately
in the PFC. 1st, 2nd, and 3rd nodes were correspond-
ing to the three steps and each of them had four attrac-
tors corresponding to four directions (up, down, left,
and right). Goal and block information were repre-
sented in goal node and block node respectively. These
two nodes biased the three nodes to select appropriate
path. Step node made strong potential in the cursor
node to inhibit action execution during preparatory
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Fig. 2. Schematic diagram of the potential network
model

period. When cue signals were displayed, this node
also reactivated corresponding node to trigger action
execution.

The forms of potentials were mixture of Gaussian
functions. They biased an attractor or several attrac-
tors. There was a potential with its centre at the ori-
gin of the state space, which prevented the state from
approaching any attractors.

In the original experiment, assignment rule between
cursor-movements and arm-movements was changed
for every several trials. Rule, arm, and motion nodes
were expected to perform the translation from cursor-
movements to arm-movements. In this paper, how-
ever, we did not add these three nodes.
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Fig. 3. Potential network model for path-planning and
examples of potential patterns

3.2 Result of simulations

Fig. 4 shows an example of state transition of 1st,
2nd, 3rd, and cursor nodes in block 3 condition. Tem-



poral sequence of events during the task was the same
to the original experiment. Two shadowed regions cor-
respond to goal displaying period and block displaying
period. Three black bars indicate movement execu-
tions for each step. During preparatory period, states
of 1st, 2nd, and 3rd nodes were biased by goal node
and block node to approach attractors corresponding
to proper cursor movements. In contrast, state of cur-
sor node was under strong inhibitive potential made
by step node so that it stayed far from any attractors.
After preparatory period, states of the three nodes
fluctuated in the state space because of noise. So they
left from attractors. When step node reactivated the
three nodes, their states approached attractors again,
which changed the state of cursor node.
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Fig. 4. An example of time series of state transition

Fig. 5 shows the probability of cursor-movement
selection of each step. In most cases this model chose
a correct path. Some errors were seen in the 3rd step in
all conditions. The state of nodes seemed to fluctuate
getting away from the basins of attractors. Another
errors were seen in the 1st step of block 3 condition,
which was failure to overwrite reflective response.
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Fig. 5. Cursor-movement selection rate

4 Discussion

Medium of modelling of cognitive functions In
general, there are two streams of modelling of human’s
complex cognitive behaviours: production system11,12

and connectionist model.13 In addition, there are some
hybrid studies.14,15 The production system is good at
highly complex problems. However, its biological basis
is not clear. On the other hand, connectionist model
has biological background and it has flexible perfor-
mance. However, this approach has a risk to be redun-
dant and to have complexity irrelevant to the essence
of computation.

The potential network model we proposed here was
intrinsically based on connectionist model. At the
same time, it was easy to implement if-then rules in
this model because each attractor’s basin and effect
were well-defined. Therefore, this model had advan-
tages of both sides.

Role of prefrontal cortex There are many hy-
potheses about the role of the PFC.16–19 Among them,
the cognitive control hypothesis is broadly accepted.
This study was consistent with the hypothesis. In the
framework of cognitive control hypothesis, the PFC
sends bias signal to posterior cortex to overwrite re-
flective, innate, or prepotent responses.2 In our model,
goal and block node made potentials to the three nodes
corresponding to each step, biasing appropriate action.



Other issues involved in planning Our model for
the path-planning task concerned only limited aspects
of planning. For example, the players of the path-
planning task were well-trained, so they could accu-
rately find correct path immediately. In fact, neu-
ron spike data from monkeys’ brains suggested that
1st, 2nd, and 3rd cursor-movement-selective neurons
in the PFC started to fire simultaneously during the
preparatory period.7 Accordingly, stepwise rehearsal
of event sequence during the preparatory period was
not performed in our model. In Addition, our model
did not include evaluation system and learning mech-
anism, which is our future works.

5 Summary

To understand the mechanism of planning in the
prefrontal cortex, We theoretically considered the ex-
perimental result of path-planning task by Mushiake
et al., using the potential network model. The result of
simulations showed that our model was able to take a
correct path in most trials regardless of goal positions
and block patterns. Our model also reproduced the
characteristics of neurons’ activities both in the PFC
and the primary motor cortex. This study indicated
that although our model was abstract and concerned
only limited aspects of planning, it could be useful for
modelling higher brain functions.
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