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Abstract

In the past, notable advances in the understand-
ing of neural processing have been made when sensory
systems were investigated from the viewpoint of adap-
tation to the statistical structure of its input space.
Here, we point out that emphasis on the input struc-
ture has happened at cost of the biological plausibility
of the corresponding neuron models which process the
natural stimuli. Hence, we propose a spiking neuron
model to process natural stimuli for which we derive
here a learning rule to estimate its parameters.

1 Introduction

Science is about exploring structure and function
of incompletely understood systems or phenomena.
What concerns the system “brain” or the phenomena
of “learning” or, say, “vision”, great advances have
been made since the debates in the early 20th century
whether individual neurons are the basic elements of
the nervous system or not (keyword neuron doctrine).
Since then, much emphasis has been on structure, i.e.
on individual neurons or on how distinct classes of
neurons are connected with each other. However, the
functional aspect of these networks of neurons cannot
be fully understood by its structure alone: How are
the interconnected neurons marshaled to give rise to
behavior? Why are the neurons as they are? Why are
they connected they way they are?

2 Background

These kind of questions were mostly addressed from
the second half of the 20th century onwards. The
brain was considered as a information processing sys-
tem, and principles of signal processing and informa-
tion theory were used to understand the function of

some parts of the brain (redundancy reduction hy-
pothesis) [2]. As information theory requires knowl-
edge about the statistical structure of the information
source, this approach triggered research into proper-
ties of the sensory environment, especially with respect
to vision [4, 6, 14, 16], and its link to neural processing
[1, 3, 5, 15, 17]. What regards vision, in addition to the
principles of information theory, other principles were
used to explain its function in the form of “The early
visual system might be optimized for . . . ”, including
energy expenditure [18], minimal wiring among neu-
rons [8], or minimal number of active neurons [12].
The early visual system comprises the retina, thalamus
and the primary visual cortex. But higher visual ar-
eas have also been investigated in this manner, making
interesting predictions on yet undiscovered cell types
[9, 10].

3 Research question

What regards the early visual system in the retina,
multiple “principles of operation” for its function have
thus been formulated. Which is the right one? We
think that this question is ill posed since it is unlikely
that the forces of evolution can be reduced to a single
optimization scheme. But it is worth remembering
that the above theories for the retina use the following
assumptions which we might summarize as linear rate-
coding assumption.

• Information is conveyed using a firing rate code.

• Retinal processing is described by a linear filter.

• The statistics of the natural scenes is described
by the power spectrum.

Although these assumptions are of course well justi-
fied as a first approximation to reality, we feel it is



time to re-consider some of them. Motivation comes
from the finding that the linear rate-coding assump-
tion becomes a limiting factor for the deeper under-
standing of the retina – as explained above, actually
different optimization schemes give the same results
under that assumption – and for the link to experi-
mental results. First, single spikes were found to be
information carrier in the early visual system of for
example the fly [13], second, significant redundancy
was found between retinal ganglion cells (also for cells
with non-overlapping receptive fields) [11]. Hence, in
the following, we re-address the neural processing of
the retina. Specifically, we make the modification that
neurons are modeled as integrate and fire elements, so
that the research question becomes
Which properties of the neural system “retina” can be

explained with the function-hypothesis that neurons in

the retina encode the input with spikes such that it can

be linearly reconstructed from the spike times with a

minimal reconstruction error.

4 Processing natural stimuli with

spikes

Here, we present a learning rule for the minimiza-
tion of the reconstruction error. The learned filters
and their relation to the early visual system will be
discussed elsewhere. Further, we limit ourselves to a
single neuron. In Section 4.1, we present the model, in
Section 4.2 we derive a learning rule for the minimiza-
tion of the reconstruction error, and in Section 4.3, we
discuss the obtained learning rule.

4.1 Model

A neuron is modeled with the SMR0-model [7]

u(t) = η(t) +

∫ t

0

κ(t − s)I(s)ds, (1)

where

η(t) =
∑

f :tf <t

η0 exp

(

−
t − tf

τr

)

(2)

I(s) =

∫ s

0

w(s − v)Y (v)dv. (3)

The spike times {tf ; f = 1, 2, . . .} are defined by the
instant of time where u reaches the threshold θ. Each
spike triggers the reset of u from θ to θ − η0, and the
neuron enters a time of reduces excitability modeled

with an exponential kernel with refractory time con-
stant τr. The neuron is driven by external input I,
which is obtained through linear filtering of the natu-
ral stimulus Y with the encoding filter w. The kernel
κ models the soma impulse response function with an
exponential kernel with time constant τm.

From the obtained spike times {tf}, we linearly re-
construct the stimulus Y via

Ŷ (t) =
∑

f :tf <t+Td

Φ(t − tf ), (4)

with the decoding filter Φ and estimation time delay
Td.

Both the encoding filter w and the decoding filter
Φ are unknown, and have to be found in order to min-
imize the average reconstruction error J

J =

〈

1

2

∫ Tt

0

e(t)2dt

〉

(5)

where e(t) = Ŷ (t) − Y (t), (6)

and <> denotes the sample average over the database
of natural stimuli ΩY .

4.2 Learning rule to minimize the recon-
struction error

Above, we have silently assumed that we know
the spike timings {tf} exactly. However, both in ex-
periments as well as in computer simulations, spikes
can only be tracked to a maximal temporal preci-
sion ∆. This implies that the integration in Eq. (1)
has to be replaced by a summation, and all vari-
ables take values in bins of size h ≥ ∆. This means
that only finitely many parameters w[1], . . . , w[N ] and
Φ[−Nd], . . . , Φ[Nt − 1] with N = Nd + Nt = (Td +
Tt)/h have to be learned.

For a steepest descent learning algorithm, direct
calculation shows that the gradient for the encoding
filter is given by

∂J

∂w[n]h
=

〈

Nt
∑

k=1

he[k]Ψn[k]

〉

(7)

Ψn[k] =
∑

kf∈T (n,k+Nd)

Φ[k − kf ]cf
n (8)

cf
n =

1

α(u[kf ] − u[kf − 1])

(

Ȳ [kf − n] + (9)

∑

pm∈T (n,kf )

cm
n η0 exp

[

−
(kf − 1 − pm)h

τr

]

)

,



where n = 1, . . . , N . The term T (x, y) denotes the
set of spike times kf satisfying x ≤ kf < y, and the
constant α is a real number slightly less than 1. Ȳ is
the natural stimulus Y input after filtering with the
soma response kernel κ.

Similarly, for n = −Nd, . . . , Nt− 1 the gradient for
the decoding filter is given by

∂J

∂Φ[n]h
=

〈

∑

kf∈Tn

e[kf + n]

〉

(10)

for Tn = T (max(1, 1 + n) − n, Nt − n). (11)

4.3 Interpretation

We discuss the obtained formulae for the gradients
for the decoding and encoding filters.

4.3.1 Decoding filter

From Eq. (4), we see that the reconstruction kernel
Φ[n] bears a a different interpretation for n > 0 and
n < 0. That is why we obtain slightly different formu-
lae for the gradient of the decoding filter Φ.

For n = k − kf < 0, the spike kf happens after the
time step k for which we try to reconstruct Y . Thus,
by Φ[n] we try to estimate the stimulus which precedes
the spike at kf by n units. Here, Tn becomes

Tn = T (1 + |n|, Nt + |n|), (12)

so that for, say, n = −Nd, we consider spikes hap-
pening from Nd + 1 till the end N = Nd + Nt, and
the gradient is given by the sum of errors which were
made Nd time steps before the spike event.

For n = k − kf > 0, however, the spike kf happens
before the stimulus Y [k] which we try to approximate
with Φ[n]. Thus Φ[n] is used to predict from the spike
time kf the stimulus which happens n time units af-
terwards. Here, Tn becomes

Tn = T (1, Nt− n), (13)

so that for, say, n = 1, we consider spikes happening
from time step 1 till Nt− 1, and the gradient is given
by sum of errors made one time step after the spike
event.

4.3.2 Encoding filter

The gradient of the encoding filter w is given by the in-
ner product between the reconstruction error e and the
function Ψn. From the formulae, we see that this func-
tion is a superposition of shifted, weighted decoding

filters. The weighting coefficient cf
n is determined by

the input Ȳ [kf−n] and the prior coefficients c1
n . . . cf−1

n

as well as the slope with which the membrane voltage
u crosses the threshold θ. The influence of the prior
coefficients decays exponentially with the distance be-
tween the the spike times. Since η0 is a constant less
than zero, the influence of the prior coefficients is sub-
tractive for spike times which are close together.

5 Summary

In the ongoing search for understanding of the early
visual system great advances have been made through
investigations in the statistical properties of natural
stimuli. We pointed out that the corresponding neu-
ron models, which process the natural stimuli, tend to
be however too simple and might be a limiting factor
for further advances. Here, we made the step to biolog-
ically more plausible models and considered processing
of natural stimuli by means of spiking neurons. Re-
quiring linear reconstructability of the input from the
spike train, we derived a learning rule for both encod-
ing and decoding filter, showing thus how parameters
of a spiking neuron model can be learned from natural
stimuli.
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