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Abstract

In this paper, we present the design of observer-
based guaranteed cost controller for a class of uncer-
tain linear systems, in which full state cannot be mea-
sured. The perturbations are assumed to be described
by structural uncertainties. Linear matrix inequality
(LMI) approach is used to design the observer-based
controller. The controller and observer gains are given
from LMI optimization and feasibility problems, re-
spectively. A numerical example shows the potential
of the proposed method.

1 Introduction

During the last decades, considerable attention has
been directed to the problem of robust stability anal-
ysis and robust stabilization of systems with parame-
ter uncertainties. Recently, in addition to the simple
stabilization, there has been much effort to design a
controller which not only achieves the stability of the
uncertain system but also guarantees an adequate level
of performance. One approach to this problem is the
guaranteed cost control method originally introduced
by Chang and Peng [1]. Although the controller is
usually constructed by using state variables, it may
not be possible to measure all the states of the system
in many cases [2,3]. Therefore, the problem of design-
ing an observer-based guaranteed cost controller has
received some attention in recent years. However, the
algorithm presented by Lien cannot be implemented
by the LMI control toolbox of MATLAB because it
contains the equality condition [4]. Mahmoud et al.
deal with the case where both the controller gain and
the observer gain have prespecified forms, and they
don’t discuss the reduction of the performance index
[5]. This paper deals with the design method which
doesn’t restrict the type of the observer gain and fur-
ther achieves the reduction of the performance index.
This method can be implemented by the LMI control

Nobuya Takahashi and Michio Kono
Department of Computer Science
and Systems Engineering

University of Miyazaki
Miyazaki 889-2192

toolbox of MATLAB.

2 Problem statement

Consider a continuous-time uncertain system of the
form

&(t) = (Ao + AA(t))z(t) + Bou(t) (1)
y(t) = (Co + AC(t))x(t) 2)

where x(t) € R™ is the state vector, u(t) € R™ is
the control input vector, y(t) € R? is the measured
output, Ag, By, Cp are known constant real-valued
matrices of appropriate dimensions, AA(t), AC(t) de-
note real-valued matrix functions representing param-
eter uncertainties. It is assumed that the system un-
certainties have the form

AA(t)=D,Fi(H) B

with
FI()Fi(t) <1

and where D, D5, E;, Ey; are known constant real-
valued matrices of appropriate dimensions and F (¢)
and F5(t) are unkonwn real time-varying matrices

The problem considered here is to design an
observer-based controller of the form

2(t) = Ao (t) + Bou(t) + Ko(y(t) = 9(2))  (3)
§(t)=Co(t) (4)
u(t) = K.2(t) (5)
which gives an upper bound on the following quadratic

performance index associated with the uncertain sys-
tem (1) and (2)

J= / Oo(:nT(t)Qa:(t)+uT(t)Ru(t))dt (6)
0

where (Q and R are given positive-definite symmetric
matrices.



3 Main results

In this section, a sufficient condition is established
for the existence of an observer-based guaranteed cost
controller for the uncertain system (1) and (2). Here,
it is assumed that

K.,=-R'BIP (7)

Theorem 1. The feedback control law (3)-(5) with (7)
is an observer-based guaranteed cost controller if there
exist a matrix K, € R™*™, a symmetric positive-
definite matricx P € R"*", such that the following
matrix inequality holds

0<0 (8)
where

0 N (AA - K,AC)TP
= | P(AA - K,AC) N

Y1 =P(4o + AA) + (4o + AA)TP
+Q - PByR™'BJ P

Yy =P(Ag — K,Co) + (49 — K,Co)TP
+PByR'BI'P

Moreover, the performance index is evaluated as

J < ¢"(0)Pp(0) + 17 (0)Pep(0) (9)

Proof. The input (3)-(5) with (7) yields the closed-
loop system

&(t) = (4o + AA(t) — ByR™'BI P)x(t)

+BoR~'BI Pe(t) (10)
é(t) = (Ao — K,Cp)e(t)
+HAA(L) — K, AC(8)2(t) (11)

where e(t) = x(t) — &(t) is the estimated error of the
system. Define a candidate of Lyapunov function as

V(z,e) = zT(t)Px(t) + e (t)Pe(t) (12)

then, the time derivative of (12) along to (10) and (11)
is calculated as

V(z,e) =227 (t)Pa(t) + 27 (t)Pe(t)
=227 (t)P{(Ag + AA(t) — B)R™'B] P)x(t)
+BoR™' Bl Pe(t)}
+2e7 (t)P{(A — K,Cy)e(t)
+(AA(t) — K,AC(t)z(t)}
=27 (t)Qz(t)
—(@" (t)Qz(t) + u” () Ru(t)) (13)

where
20 = |5 ] (19
Applying (8) to (13) gives

V(z,e) < —(x¥ #)Qx(t) + u” () Ru(t)) <0 (15)

for any x(t) # 0. Thus, the closed-loop system is
asymptotically stable.
Further, integrating (15) from 0 to T leads to

T (T)Px(T) — = (0)Px(0)
+eT(T)Pe(T) — €T (0)Pe(0)
< —(2T(t)Qz(t) + uT (t)Ru(t)) <0 (16)

Here, the aymptotic stability of the closed-loop system
implies that

2T (T)Px(T) = 0, e"(T)Pe(T) = 0 (17)
as T tends to the infinity. Hence, it is obtained that

J = /Oo(a:T(T)Qw(T) + uT(1)Ru(r))dr
0

< T (0)Pz(0) + =T (0)Px(0)
= ¢"(0)P¢(0) + 4" (0)P(0) (18)
As a result, the proof is complete. 0

Next, on the basis of Theorem 1, we prove another
sufficient condition without uncertain parameters. Be-
fore stating Theorem 2, a necessary lemma, will be in-
troduced.

Lemma 1 [5]. Let D and E be matrices of appropri-
ate dimensions, and F' be a matrix function satisfying
FTF < I. Then for any positive scalar «, the follow-
ing inequality holds

DFE+ ETFTDT <aDDT + o 'ETE  (19)

Theorem 2. If there exist scalars v >0, 6 > 0, € > 0,
a matrix K,, a symmetric positive-definite matrix P
such that the following matrix inequality

{ 203 204 ] <0 (20)

where
Y3=PAg+ AP - PB,R'BIP+Q
1 1 1
+vPD,DTP + :/ElTEl + ;ElTEl + 5E2TE2
Yy=P(Ay — K,Cp) + (49 — K,Co)TP
+PByR™'B] P +¢PD,D{ P
+6PK,D;DIKTP



is satisfied, then the memoryless state feedback control
law (5) is an observer-based guaranteed cost controller
and

J* = ¢ (0)P¢(0) + 4" (0)Py(0) (21)

is a guaranteed cost for the uncertain system (1) and

(2).

Proof. By applying Lemma, 1, it follows for any v >
0, 6 >0, ¢ >0 that

227 (t)PAAx(t) = 227 (t)PD, Fy E,1x(t)

<yxl(t)PD, DT Px(t) + —x" (t)ET Byx(t) (22)
eT(t)PAAx(t) = 2T (t)PD,F, Ey(t)

<eeT(t)PD,DT Pe(t) + 2T (t)ET E1x(t) (23)

—2eT (t)PK,ACx(t) = —2€T (t)PK,DyFy Esx:(t)
<6e” (t)PK,Dys DI KT Pe(t)

+5a () E] Baa(t) (24)

Substituting (22), (23), (24) into (8) yields the desired
result. 0

Theorem 3. For a given pair of § > 0, ¢ > 0, if the
following LMI optimization problem; min{tr(P)}

s XEI XEY XET X

E X 0 —el 0 0 <0 (25
Ey X 0 0 —6I 0
X 0 0 0 —Q !
where

Y5 = AoX + XAl — BoR7'BI ++yD, D]

has a solution of scalar v > 0, and symmetric positive-
definite matrix X, and if

Y  PK,Ds PB, PD,

DTKTP —%I 0 0
BIP 0 -r o |<0 (26
DTP 0 0 -i1

where
Y = PAy + AT'P - PK,Co — CTKTP
has a solution of matrix K,, then the control law

u(t)=—R'BI X 1a(t) (27)

is a suboptimal guaranteed cost controller which gives
the optimal value of the guaranteed cost (21) for the
given parameters § > 0, € > 0.

Proof. Pre- and post-multiplying X3 by P~! on both
sides, and denoting X = P~! lead to the equivalent
inequality

1
AoX + XAl — BoR'B{ ++D:1 DT + ;XElTE1X

1 1
+-XETE. X + gXEQT EX +XQX <0 (28)
€

It follows from Schur Complement that (28) is equiv-
alent to (25).
Next, using Schur Complement for ¥4, we obtain

Y  PK,Ds PB, PD,

DTKTP —%I 0 0

BIP 0 -r o |<0 29
1

pTP 0 0 -ir

€
Y6 = PAg+ AP - PK,Cy — CIKIP

For given scalars 6 > 0, € > 0, if there exist 7y, X

n (25) which is a solution of optimal LMI problem;

min{tr(P)}, and if there exists a matrix K, which sat-

isfies (26) using P = X1, the guaranteed cost under

4, €is suboptimal. 0

Remark 1. The suboptimal guaranteed cost controller
(27) for over all parameters §, € can be determined by
a search such as the optimization problem in Theorem
3 has a solution.

4 An illustrative example

Consider the uncertain time-delay system described
by the state equation

z(t)= (Ao + AA(t))x(t) + Bou(t) (30)
y(t)=(Co + AC(¢))z(t) (31)
and full state observer for nominal part of the system
& (t) = Aok (t) + Bou(t) + Ko(y(t) — (1) (32)
§(t) = Co(t) (33)

and the performance index (6), where

0 1 0.2
o[ Sa]ome [

1 1
Co=[1 2], D= [0 00]
1
0

Dy=[03 01], Ei=Ey = [ ?]



and § =4.3, ¢e=8.8
The suboptimal observer-based guaranteed cost

controller can be determined by solving (25) and (26).

We obtain

_[25925 02558 ] . _ [ 0.1142
| 02558 05849 | 0T | 7.9563 |

K.=—-R'BfP = -1.2858 —1.8057 ],
v=4.3974, J* =6.3547

P

The simulation results are shown in Figs. 1-4.
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Fig.1 Trajectories of states.
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Fig.2 Trajectories of estimated states.
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Fig.3 Trajectories of errors.
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Fig.4 Trajectory of output.

5 Summary

This paper discusses an LMI approach to observer-
based guaranteed cost control problem. A sufficient
condition for the existence of memoryless state feed-
back guaranteed cost controllers is derived on the basis
of the LMI approach. A numerical example shows the
potential of the proposed method.
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