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1 Introduction

Guaranteed cost control problem is the design

method of the robust control system [1]. This method

guarantees the robust stability of disturbed control

system by using existing of the upper bound of

quadratic performance index. Kono extended this

method to the case with cross term in performance

index and show the condition for robust stability [2].

In this paper, we extend this problem to the discrete

time system. As the result of formulation, stochastic

discrete Riccati equation is obtained. We show and

prove the condition of the closed loop system to be

stable. Finally, through showing the numerical exam-

ple, we validate out method.

2 Derivation of discrete time stochas-
tic Riccati equation

In this section, we derive the stochastic discrete Ric-

cati equation with performance index including cross

term of input vector and state vector. Wonham pro-

posed this equation which is obtained as the result of

stochastic control problem [3]. In this literature, the

stochastic discrete Riccati equation is formed as the

discrete Riccati equation with additional structured

term. In this section, we extend this problem to the

performance index with cross term with state vector

and input vector. We abbreviate stochastic discrete

Riccati equation as SDARE.

Let us consider the discrete time linear control sys-

tem with uncertainty in state matrix,

x(k + 1) = A(ξ)x(k) + Bu(k) (1)

A(ξ) is defined as

A(ξ) = A0 +
p∑

i=1

ξiAi (2)

where A0 is nominal structure of the state matrix, Ai

is structure of the uncertainty, and ξi is size of the

uncertainty. Performance index is defined as

J =
∞∑

k=0

{
x(k)T Qx(k) + u(k)T Ru(k) + 2x(k)T Su(k)

}

=
∞∑

k=0

l(x, u) (3)

where Q ≥ 0, R > 0 and S ≥ 0 are weighting matrices

for state vector, input vector and cross term of state

and input vector, respectively. These matrices take

appropriate dimension size. Lyapunov function V (·)
is

V (x(k)) = x(k)T P (k)x(k) (4)

From the principle of optimality, we have

H(V, x, u, ξ)

= l(x, u) + V (x(k + 1), k + 1) − V (x(k), k)

= xT CT Cx + uT Ru + 2xT Su − xT P (k)x

+(A(ξ)x + Bu)T P (k + 1)(A(ξ)x + Bu)



= xT CT Cx + uT Ru + 2xT Su

+xT A(ξ)T P (k + 1)A(ξ)x + uT BT P (k + 1)Bu

+2xT A(ξ)T P (k + 1)Bu − xT P (k)x ≤ 0 (5)

In the LQR problem of discrete time system, by using

solution P (k) of the SDARE, the optimal input vector

u(k) is defined as follows,

u(k) = −(BT P (k+1)B+R)−1(AT
0 P (k+1)B+S)T x(k)

(6)

Then, let (BT PB + R)−1(AT
0 PB + S)T = Ω(P ) and

substitute into equation (5), we have

= xT CT Cx + xT Ω(P (k + 1))T RΩ(P (k + 1))x

−xT SΩ(P (k + 1))x − xT Ω(P (k + 1))T ST x

+xT A(ξ)T P (k + 1)A(ξ)x

+xT Ω(P (k + 1))T BT P (k + 1)BΩ(P (k + 1))x

−xT A(ξ)T P (k + 1)BΩ(P (k + 1))x

−xT Ω(P (k + 1))T BT P (k + 1)A(ξ)x − xT P (k)x

≤ 0

Now, let us substitute structured uncertainty A(ξ) =

A0 + ∆A, then

= xT CT Cx + xT Ω(P (k + 1))T RΩ(P (k + 1))x

−xT SΩ(P (k + 1))x − xT Ω(P (k + 1))T ST x

+xT AT
0 P (k + 1)A0x + xT ∆AT P (k + 1)∆Ax

+xT AT
0 P (k + 1)∆Ax + xT ∆AT P (k + 1)A0x

+xT Ω(P (k + 1))T BT P (k + 1)BΩ(P (k + 1))x

−xT AT
0 P (k + 1)BΩ(P (k + 1))x

−xT Ω(P (k + 1))T BT P (k + 1)A0x

−xT ∆AT P (k + 1)BΩ(P (k + 1))x

−xT Ω(P (k + 1))T BT P (k + 1)∆Ax − xT P (k)x

= xT
{
CT C + AT

0 P (k + 1)A0 + Ω(P (k + 1))T BT

·P (k + 1)BΩ(P (k + 1)) − AT
0 P (k + 1)B

·Ω(P (k + 1)) − Ω(P (k + 1))T BT P (k + 1)A0

+Ω(P (k + 1))T RΩ(P (k + 1)) − SΩ(P (k + 1))

−Ω(P (k + 1))T ST − P (k) + ∆AT P (k + 1)∆A

+AT
0 P (k + 1)∆A + ∆AT P (k + 1)A0

−∆AT P (k + 1)BΩ(P (k + 1))

−Ω(P (k + 1))T BT P (k + 1)∆A
}
x ≤ 0 (7)

From the positive semi-definitively of H(·), we obtain

following inequality

T (x, k, P ) = T0(P (k + 1)) + T1(P (k + 1))

+CT C − P (k) ≤ 0 (8)

Now, T0(·) and T1(·) are

T0(P (k + 1))

= AT
0 P (k + 1)A0 − (AT

0 P (k + 1)B + S)(BT

·P (k + 1)B + R)−1(AT
0 P (k + 1)B + S)T (9)

T1(P (k + 1))

= ∆AT P (k + 1)∆A + ∆AT P (k + 1)A0

+AT
0 P (k + 1)∆A − ∆AT P (k + 1)BΩ(P (k + 1))

−Ω(P (k + 1))T BT P (k + 1)∆A (10)

where, let U1 is the upper bound matrix of T1(·), form

inequality condition (8), we have following difference

equation.

T0(P (k + 1)) + CT C + U1 − P (k) = 0 (11)

Suppose that there exists stationary solution of equa-

tion (11)

P = T0(P ) + CT C + U1 (12)

Therefore, we obtain the SDARE with performance

index including cross term as follows

P = AT
0 PA0 − (AT

0 PB + S)(BT PB + R)−1

·(AT
0 PB + S)T + CT C + U1 (13)

In equation (13), if we omit the upper bound matrix,

it coincide with the SDARE of nominal system.

3 Robust stability

In this section, under the assumption that there

exists a solution P of SDARE, we prove stability of



the closed-loop system which is designed by using out

proposed method

Theorem 1 In the system (1), optimal input u∗

which minimized the performance index (3) is obtained

u∗(k) = −(BT PB + R)−1(AT
0 PB + S)x(k)

= −Ω(P )x(k) (14)

Then the closed-loop system Ac(·) is

x(k + 1) = Ac(A(ξ), B, P )x(t) (15)

where

Ac(A(ξ), B, Ω(P )) = A(ξ) − BΩ(P )

Now, we suppose following assumption

Assumption 1 Let

AT
c PBΩ(P ) + Ω(P )T BT PAc

−Ω(P )T RΩ(P ) + CT C = DT D, (16)

then DT D is positive semi-definite.

Next, we derive theorem for asymptotical stability of

closed-loop system.

Theorem 2 The closed-loop system (15) with opti-

mal feedback control input (14) is asymptotic stabil-

ity, if there exists positive semi-definite solution P of

SDARE (13) and assumption 1 is satisfied.

(proof of Theorem 2) In discrete time system,

from stability condition in the sense of Lyapunov, we

have

AT
c PAc − P ≤ 0 (17)

Substitute Ac into inequality (17), left-hand side of

the inequality becomes

= (A(ξ) − BΩ(P ))T P (A(ξ) − BΩ(P )) − P

= A(ξ)T PA(ξ) − A(ξ)T PBΩ(P ) − Ω(P )T BT PA(ξ)

+Ω(P )T BT PBΩ(P ) − P (18)

Substitute A(ξ) = A0 + ∆A

= AT
0 PA0 + AT

0 P∆A + ∆AT PA0 + ∆AT P∆A

−AT
0 PBΩ(P ) − ∆AT PBΩ(P )

−Ω(P )T BT PA0 − Ω(P )T BT P∆A

+Ω(P )T BT PBΩ(P ) − P

= AT
0 PA0 − AT

0 PBΩ(P ) − Ω(P )T BT PA0

+Ω(P )T BT PBΩ(P ) − P + T1(P ) (19)

Where, we substitute P of equation (13) into (19), we

have

= AT
0 PA0 − AT

0 PBΩ(P ) − Ω(P )T BT PA0

+Ω(P )T BT PBΩ(P ) − P + T1(P )

= AT
0 PA0 − AT

0 PBΩ(P ) − Ω(P )T BT PA0

+Ω(P )T BT PBΩ(P ) + T1(P )

−{AT
0 PA0 − Ω(P )T (BT PB + R)Ω(P )

+CT C + U1}
= −AT

0 PBΩ(P ) + Ω(P )T BT PBΩ(P )

−Ω(P )T BT PA0 + Ω(P )T BT PBΩ(P )

+Ω(P )T RΩ(P ) − CT C − (U1 − T1(P ))

= −(A0 − BΩ(P ))T PBΩ(P ) − Ω(P )T BT P

·(A0 − BΩ(P )) + Ω(P )T RΩ(P ) − CT C

−(U1 − T1(P ))

= −{
AT

c PBΩ(P ) + Ω(P )T BT PAc − Ω(P )T RΩ(P )

+CT C
} − (U1 − T1(P )) ≤ 0 (20)

From equation (20), we obtain the stabilizable condi-

tion

AT
c PBΩ(P ) + Ω(P )T BT PAc

−Ω(P )T RΩ(P ) + CT C ≥ 0 (21)

Q. E. D.

4 Eigenvalue upper bound

From equation (10), uncertainty is described as

T1(P ) = ∆T AP∆A + ∆AT P (A0 − BΩ(P ))

+(A0 − BΩ(P ))T P∆A (22)



where P is the stationary solution of SDARE. From

equation (2), substitute uncertainty of system matrix

∆A =
∑p

i=1 ξiAi and we obtain

=
p∑

i=1

ξiζjDij +
p∑

i=1

[
AT

i P (A0 − BΩ(P ))

+ (A0 − BΩ(P ))T PAi

]
(23)

where

Dij = AT
i PAj + AT

j PAi

Because AT
i P (A0−BΩ(P ))+(A0−BΩ(P ))T PAi and

Dij are symmetric matrices, then there exist orthogo-

nal matrices Yi and Zij which satisfy

Y T
i

[
AT

i P (A0 − BΩ(P ))

+(A0 − BΩ(P ))T PAi

]
Yi = Λi (24)

ZT
ijDijZij = Γij (25)

where Λi and Γij are diagonal matrices. By using

Yi, Dij , Λi and Γij , the upper bound matrix of T (P )

is expressed as

UE =
p∑

i=1

Y T
i ‖Λi‖Yi +

1
2

p∑
i=1

p∑
j=1

ZT
ij‖Γij‖Zij (26)

where UE is called eigenvalue upper bound matrix. In

the next section, we show the numerical example.

5 Numerical example

We consider following system parameter,

A0 =
[

0 1
1.5 0

]
, A1 =

[
0 0

0.5 0

]
,

B =
[

0
1

]
, Q =

[
1 0
0 1

]
,

S =
[

1
0

]
, R = 1

Using these parametr, we solve the SDARE with eigen-

value upper bound and obtain stationary solution P .

Poles of the nominal closed-loop system is obtained as

( 0.40825 , − 0.40825 )

Poles of the perturbed closed-loop system is obtained

as

( 0.81650 , − 0.81650 )

This result shows that the perturbed system remains

in stable, then we had confirm robust stability for dis-

turbance of our proposed method.

6 Conclution

In this paper, we consider the guaranteed cost con-

trol problem for the performance index including cross

term of discrete time system. We show the structure

of uncertainty and discuss about stationary condition.

We apply eigenvalue upper bound matrix to this prob-

lem and show the numerical example. From this result,

we confirm the robust stability of the closed-loop sys-

tem for the system matrix disturbance. Future study

is to consider about linear upper bound. It is pointed

out that there exists relationship between linear up-

per bound matrix and LMI solution of the structured

uncertain system.
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