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Abstract

Recently, due to the advances in dynamic image pro-
cessing, computer animation, and so forth, it has be-
come increasingly apparent that the study of four-
dimensional pattern processing should be very im-
portant. Thus, we think that the research of four-
dimensional automata as the computational model of
four-dimensional information processing has been sig-
nificant. During the past about five years, automata
on a four-dimensional tape have been proposed and
several properties of such automata have been ob-
tained. One model is the four-dimensional alternating
finite automaton (4-AFA) which is an alternating ver-
sion of a four-dimensional finite automaton, and an-
other is the four-dimensional nondeterministic on-line
tessellation acceptor (4-NOTA) which is a natural ex-
tension of the three-dimensional nondeterministic on-
line tessellation acceptor to four dimensions. In this
paper, we mainly investigate a relationship between
the accepting powers of 4-AFA’s and 4-NOTA’s.
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1 Introduction and Preliminaries

The question of whether processing four-
dimensional digital patterns is much difficult than
two- or three-dimensional ones is of great interest from

the theoretical and practical standpoints. In recent
years, due to the advances in many application areas
such as dynamic image processing, computer anima-
tion, and so on, the study of four-dimensional pattern
processing has been of crucial importance. Thus, we
think that the research of four-dimensional automata
as the computational model of four-dimensional
pattern processing has been meaningful. This paper
mainly deals with four -dimensional alternating
finite automaton (4-AFA) and four -dimensional
nondeterministic on-line tessellation acceptor (4-
NOTA), and investigate some results concerning a
relationship between the accepting powers of 4-AFA’s
and 4-NOTA’s [1,4].

Let
∑

be a finite set of symbols. A four -
dimensional tape over

∑
is a four-dimensional rect-

angular array of elements of
∑

. The set of all four-
dimensional tape over

∑
is denoted by

∑
(4). Given

a tape x∈∑
(4), for each j(1≤j≤4), we let lj(x) be the

length of x along the jth axis. When 1≤ij≤lj(x) for
j(1≤j≤4), let x(i1, i2, i3, i4) denote the symbol in x
with coordinates (i1, i2, i3, i4). Furthermore, we define
x[(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)], when 1≤ij≤i’j≤lj(x)
for each integer j(1≤j≤4), as the four-dimensional tape
y satisfying the following:

(i) for each j(1≤j≤4), lj(y)=i’j-ij+1;

(ii) for each r1, r2, r3, r4 (1≤r1≤l1(y), 1≤r2≤l2(y),
1≤r3≤l3(y), 1≤r4≤l4(y)), y(r1, r2, r3, r4)=x(r1+i1-1,



r2+i2-1, r3+i3-1, r4+i4-1). We let the input tapes,
through this paper, be restricted to ones which each
sidelength is eguivalent in order to increase the theo-
retical interest,as shown in Fig.1.
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Fig. 1: Four-dimensional input tape.

A 4-AFA M is a four-dimensional finite automa-
ton whose state set is partitioned into universal and
existential states. The machine M has a read-only
four-dimensional tape. A step of M consists of read-
ing one symbol from the input tape, moving the in-
put head in specified direction d∈{east, west, south,
north, up, down, future, past, no more}, and entering
a new state, in accordance with the next-move rela-
tion. A seven-way four -dimensional alternating finite
automaton (SV4-AFA) is a 4-AFA whose input head
can move in only seven directions — east, west, south,
north, up, down, or future.

A 4-NOTA M is an infinite mesh-connected four-
dimensional array of cells. Each cell of the four-
dimensional array consists of a nondeterministic finite-
state machine. The nondeterministic finite-state ma-
chines are all identical. M decides whether a four-
dimensional tape is accepted or not by on-line fash-
ions. For more details of the definitions of 4-AFA and
4-NOTA, see [4] and [1], respectively.

Let T(M) be the set of four-dimensional
tapes accepted by a machine M, and let £[4-
AFA]={T|T=T(M) for some 4-AFA}. £[SV4-AFA]
and £[4-NOTA] are defined in the same way as
£[4-AFA]. Further, for a set T(M) of four-dimensional
tapes accepted by a machine M, the complementation
of T(M) is denoted by T̄(M).

2 Results

We first investigate a relationship between the ac-
cepting powers of 4-AFA’s and 4-NOTA’s.

Lemma 2.1. £[4-AFA]*£[4-NOTA].

Proof : We consider the four-dimensional tape
embedding of directed bipartite graphs with equal
number of vertices on both sides [2,3]. Let

∑
={vi,

e, w, s, n, u, d, f, p, +, x, 0} be a finite set of sym-
bols used for the embedding. We use the following
embedding rule. The symbol vi represents the ith
vertex for each i (1≤i≤2n), symbol + means an in-
tersection of two edges (i.e., where they join or split),
symbol x is for a cross-over of two-edges, symbol 0
represents a blank space, and symbol e, w, s, n, u,
d, f, and p are the symbols needed to form eastward,
westward, southward, northward, upward, downward,
future, and past edges, respectively. Let P

¯
be a four-

dimensional tape embedding of a directed bipartite
graph with k=2m(m+1)-m vertices on both sides. The
size of P

¯
will be (4m+3)×(4m+3)×(4m+3)×(4m+3)

(including the boundary symbols). The (2m+2)th
plane of some two cubes of P

¯
defines 2k vertices

of a bipartite graph, where the westmost k vertices
on the (2m+2)th plane of one cube form one group
and eastmost k vertices on the (2m+2)th plane of
the other cube form the other group. The 2k vi’s
are placed such that there are blanks separating the
first m vertices of one cube from the second m ver-
tices of the other cube on each odd-numbered row,
and there is a blank between consecutive vi’s in both
the eastmost and weatmost groups. An example of
such embedding is given in Fig.2. Consider language
L1={P|P∈

∑
(4) and P

¯
is a four-dimensional tape em-

bedding of some acyclic directed bipartite graph with
equal number of vertices on both sides}. We can show
that L1 can be accepted by a 4-AFA but not by any
4-NOTA. □

Lemma 2.2. For 　 every 4-AFA A, L̄(A) is
accepted by a 4-NOTA.

Proof : Let A be a 4-AFA. Define the comple-
ment 4-AFA of A to be Ā. That is, Ā is obtained by
swapping the universal and existential states, and the



accepting and nonaccepting states of A. Note that in
general, L̄(A)6=L(Ā), since A may reject an input by
entering an infinite loop. We construct a 3-NOTA M
to accept L̄(A). Let x be an input pattern. Given x,
M tries to guess and verify the existence of a (possibly
infinite) computation tree of Ā on x whose leaves are
all labeled with accepting configurations. Let π denote
the computation tree of Ā on x that M will guess. Let
R(i1, i2, i3, i4) denote the set of all states of Ā when
its input head is at the (i1, i2, i3, i4) cell, 1≤i1≤l1(x),
1≤i2≤l2(x), 1≤i3≤l3(x), 1≤i4≤l4(x), in the guessed
computation tree π. For each q∈R(i1, i2, i3, i4), call(x,
( i1, i2, i3, i4), q) a configuration (of Ā) represented
by q. Generally, the (i1, i2, i3, i4) cell of M operates
as follows. It receives the sets R(i1-1, i2, i3, i4) and
R(i1, i2, i3, i4) from the (i1-1, i2, i3, i4) cell, the sets
R(i1, i2-1, i3, i4) and R(i1, i2, i3, i4) from the (i1, i2-1,
i3, i4) cell, the sets R(i1, i2, i3-1, i4) and R(i1, i2, i3,
i4) from the (i1, i2, i3-1, i4) cell, and the sets R(i1, i2,
i3, i4-1) and R(i1, i2, i3, i4) from the (i1, i2, i3, i4-1)
cell, and verifies that R(i1, i2, i3, i4) is consistent with
the neighboring sets R(i1-1, i2, i3, i4), R(i1, i2-1, i3,
i4), R(i1, i2, i3-1, i4), R(i1, i2, i3, i4-1), R(i1+1, i2, i3,
i4), R(i1, i2+1, i3, i4), R(i1, i2, i3+1, i4), R(i1, i2, i3,
i4+1). That is, the following conditions must hold :
(a) none of the members of R(i1, i2, i3, i4) represents a
terminating nonaccepting configuration; (b) if q∈R(i1,
i2, i3, i4) and q is universal, then all immediate suc-
cessors of the configuration (x, ( i1, i2, i3, i4), q) are
represented by the states contained in R(i1-1, i2, i3,
i4)

⋃
R(i1, i2-1, i3, i4)

⋃
R(i1, i2, i3-1, i4)

⋃
R(i1, i2, i3,

i4-1)
⋃

R(i1+1, i2, i3, i4)
⋃

R(i1, i2+1, i3, i4)
⋃

R(i1, i2,
i3+1, i4)

⋃
R(i1, i2, i3, i4+1)

⋃
R(i1, i2, i3, i4); and (c) if

q∈R(i1, i2, i3, i4) and q is existential, then at least one
of the immediate successors of the configuration (x, (
i1, i2, i3, i4), q) is represented by the states contained
in R(i1-1, i2, i3, i4)

⋃
R(i1, i2-1, i3, i4)

⋃
R(i1, i2, i3-1,

i4)
⋃

R(i1, i2, i3, i4-1)
⋃

R(i1+1, i2, i3, i4)
⋃

R(i1, i2+1,
i3, i4)

⋃
R(i1, i2, i3+1, i4)

⋃
R(i1, i2, i3, i4+1)

⋃
R(i1, i2,

i3, i4). Also, the (i1, i2, i3, i4) cell passes the sets R(i1,
i2, i3, i4) and R(i1+1, i2, i3, i4) to the (i1+1, i2, i3,
i4) cell, the sets R(i1, i2, i3, i4) and R(i1, i2+1, i3, i4)
to the (i1, i2+1, i3, i4) cell, and so on. It addition,

the(1,1,1,1) cell makes sure that R(1,1,1,1) contains
q0.

The 4-NOTA M constructed above verifies that for
every configuration in the guessed tree π, either it is
a terminating accepting configuration or it is nonter-
minating and all of its immediate successor configura-
tions exist. It is easy to see that, if x is rejected by A,
then there exists a (possibly infinite) computation tree
of Ā on x whose leaves are all labeled with accepting
configurations, and vice versa. Hence, M accepts
L̄(A). □

Lemma 2.3. £[4-NOTA]*£[3-AFA].

Proof : Suppose that £[4-NOTA]⊆£[4-AFA]. 　
Let T1 be the same language that we considered in the
proof of Lemma 2.1. From Lemma 2.2 and hypothe-
sis, L̄1 is accepted by a 4-AFA. By Lemma 2.2, L1 is
accepted by a 4-NOTA. But L1 is not accepted by any
4-NOTA, as shown in the proof of Lemma 2.1. This is
a contradiction. Hence, £[4-NOTA]*£[3-AFA]. □

From Lemmas 2.1 and 2.3, we have the following
result.

Theorem 2.1. £[4-AFA] and £[4-NOTA] are in-
comparable.

Next, we investigate a relationship between the ac-
cepting powers of SV4-AFA’s and 4-NOTA’s.

Lemma 2.4. £[SV4-AFA] is closed under
complementation.

Proof : Let A be an SV4-AFA and Ā be the com-
plement of A as in the proof of Lemma 2.2. By using
the same idea as in the proof of Theorem 4.4 in [3],
we can construct an SV4-AFA A’ from Ā such that
L(A’)=L̄(A). □

Theorem 2.2. £[FV4-AFA](£[4-NOTA].

Proof : From Lemma 2.4, £[SV4-AFA] is closed
under complementation. The inclusion follows from
Lemma 2.2. That it is proper follows since £[SV4-
AFA]⊆£[4-AFA] and £[4-AFA] is incomparable with
£[4-NOTA]. □



Fig. 2: An example of embedding (m=1).

3 Conclusion

This paper mainly investigated a relationship be-
tween the accepting powers of alternating finite au-
tomata and nondeterministic on-line tessellation ac-
ceptors on four- dimensional input tapes. It is interest-
ing to investigate closure properties about their four-
dimensional automata. We will treat this problem in
further papers.
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