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Abstract

The recent adurances in computer animation, mo-
tion image processing and so on prompted us to an-
alyze computational complexity of multi-dimensional
information processing to explicate the properties of
four-dimensional automata, i.e., three-dimensional au-
tomata with the time axis. From this point of view, we
first introduced four-dimensional alternating Turing
machines 4-ATM ’s, and investigated leaf-size bounded
computation for 4-ATM ’s in [4,6]. In this paper,
we continue the investigations about 4-ATM ’s, and
maily investigate leaf-size bounded computation of 4-
ATM ’s. Basically, the ‘leaf-size’ is the minimum num-
ber of leaves of some accepting computation trees of
alternating Turing machines. Leaf-size, in a sense, re-
flects the minimum number of processors that run in
parallel in accepting a given input.
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1 Introduction and Preliminaries

In 1967, the problem of computational complex-
ity was also arisen in the two-dimensional informa-
tion processing. Blum et al. first proposed two-
dimensional automata, and investigated their pattern
recognition abilities [1]. Since then, many researchers
in this field have been investigating a lot of prop-
erties about automata on two- or three-dimensional
tapes. In 1976, Chandra et al. introduced the con-
cept of ‘alternation’as a theoretical model of paral-
lel computation [2]. After that, Inoue et al. intro-
duced two-dimensional alternating Turing machines as
a generalization of two-dimensional nondeterministic
Turing machines and as a mechanism to model paral-
lel computation [5]. Moreover, Sakamoto et al. pre-
sented three-dimensional alternating Turing machines
in [7,9].

On the other hand, recently, due to the advances
in many application areas such as computer anima-
tion, motion image processing, and so forth, it has
become increasingly apparent that the study of four-
dimensional pattern processing, i.e., three-dimensional
automata with the time axis should be of crucial im-
portance. Thus, we think that it is very useful for an-
alyzing computation of four-dimensional pattern pro-
cessing to explicate the properties of four-dimensional
automata. From this viewpoint, we introduced some
four-dimensional automata[6, 10].

In this paper, we continue the investigations about
four-dimensional alternating Turing machines [4, 6],
and mainly investigate leaf-size hierarchy of four-
dimensional alternating Turing machines which each
sidelength of each input tape is equivalent. Leaf-size
bounded computation was introduced as a simple, nat-
ural new complexity measure for alternating Turing
machines[5]. Basically, the ‘leaf-size’ (or ‘blanching’)
is the minimum number of leaves of some accepting
computation trees of processors that run in parallel in
accepting a given input.

Let Σ be a finite set of symbols. A four-dimensional
input tape over Σ is a four-dimensional rectangular
array of elements of Σ. The set of all the four-
dimensional input tapes over Σ is denoted by Σ(4).
Given an input tape x ∈ Σ(4), for each j(1 ≤ j ≤ 4),
we let lj(x) be the length of x along the jth axis. The
set of all x ∈ Σ(4) with l1(x) = m1, l2(x) = m2, l3(x)
= m3, and l4(x) = m4 is denoted by Σ(m1,m2,m3,m4).
If 1 ≤ ij ≤ lj(x) for each j(1 ≤ j ≤ 4), let x(i1, i2, i3,
i4) denote the symbol in x with coordinates (i1, i2, i3,
i4). Furthermore, we define x [(i1, i2, i3, i4), (i′1, i′2,
i′3, i′4)], when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j(1 ≤
j ≤ 4), as the four-dimensional input tape y satisfying
the following:

(i) for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(ii) for each r1, r2, r3, r4 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤
l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2,
r3, r4) = x(r1 + i1 − 1, r2 + i2 − 1, r3 + i3 − 1,
r4 + i4 − 1).



As usual, a four-dimensional input tape x over Σ
is surrounded by the boundary symbols #’s (# /∈ Σ).
Furthermore, four-dimensional tape is the sequence of
three-dimensional rectangular arrays along the time
axis. By Cubex(i) (i ≥ 1), we denote the ith three-
dimensional rectanglar array along the time axis in x
∈ Σ(4) which each sidelength is equivalent.

Let Σ1, Σ2 be finite set of symbols. The projection
is a mapping τ̃ : Σ(4)

1 → Σ(4)
2 which is obtained by

extending a mapping τ : Σ1 → Σ2 as follows : τ̃(x)=x′

if and only if (i)li(x) = li(x′) for each i(1 ≤ i ≤ 4), and
(ii)τ(x(i1, i2, i3, i4))=x′(i1, i2, i3, i4) for each (i1, i2,
i3, i4)(1 ≤ i1 ≤ l1(x), 1 ≤ i2 ≤ l2(x), 1 ≤ i3 ≤ l3(x),
1 ≤ i4 ≤ l4(x)). If T ⊆ Σ(4)

1 , we let τ̃(T ) = {τ̃(x) | x
∈ T }.

We now recall the definition of a four-dimensional
alternating Turing machine (4-ATM), which can
be considered as an alternating version of a four-
dimensional Turing machine (4-TM) [6].

4-ATM M is defined by the 7-tuple

M = (Q, q0, U ,F , Σ, Γ, δ), where

(1) Q is a finite set of states;

(2) q0 ∈ Q is the initial state;

(3) U ⊆ Q is the set of universal states;

(4) F ⊆ Q is the set of accepting states;

(5) Σ is a finite input alphabet (# /∈ Σ is the boundary
symbol);

(6) Γ is a finite storage-tape alphabet (B ∈ Γ is the
blank symbol), and

(7) δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × (Γ− {B}) ×
{east, west, south, north, up, down, future, past,
no move} × {right, left, no move}) is the next-
move relation.

A state q in Q − U is said to be existential. As
shown in Fig. 1, the machine M has a read-only four-
dimensional input tape with boundary symbols #’s
and one semi-infinite storage tape, initially blank. Of
course, M has a finite control, an input head, and a
storage-tape head. A position is assigned to each cell of
the read-only input tape and to each cell of the storage
tape, as shown in Fig. 1. The step of M is similar to
that of a two- or three-dimensional Turing machine
[3–5, 7], except that the input head of M can move in
eight directions. We say that M accepts the tape x if
it eventually enters an accepting state. Note that the
machine cannot write the blank symbol. If the input
head falls off the input tape, or if the storage head falls
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Fig. 1: Four-dimensional alternating Turing machine.

off the storage tape (by moving left), then the machine
M can make no further move.

Let L(m): N → R be a function with one variable
m, where N is the set of all positive integers and R
is the set of all nonnegative real numbers. With each
4-ATM M we associate a space complexity function
SPACE that takes configurations to natural numbers.
That is, for each configuration c = (x, (i1, i2, i3, i4),
(q, α, j)), let SPACE(c) = |α|. M is said to be L(m)
space-bounded if for each m ≥ 1 and for each x with
l1(x) = l2(x) = l3(x) = l4(x) = m, if x is accepted
by M , then there is an accepting computation tree of
M on input x such that for each node v of the tree,
SPACE(L(v)) ≤ dL(m)e1. We denote an L(m) space-
bounded 4-ATM by 4-ATM (L(m)).

A 4-ATM(0) is called a four-dimensional alternat-
ing finite automaton, which can be considered as an al-
ternating version of a four-dimensional finite automa-
ton (4-FA), and is denoted by 4-AFA.

In order to distinguish among determinism, non-
determinism, alternation with only universal states,
and alternation, we denote a deterministic 4-TM
[nondeterministic 4-TM , 4-ATM with only univer-
sal states, deterministic 4-TM(L(m)), nondetermin-
istic 4-TM(L(m)), 4-ATM(L(m)) with only univer-
sal states, deterministic 4-FA, nondeterministic 4-
FA, 4-AFA with only universal states] by 4-DTM [4-
NTM , 4-UTM , 4-DTM(L(m)), 4-NTM(L(m)), 4-
UTM(L(m)), 4-DFA, 4-NFA].

Let M be an automaton on a three-dimensional
tape. We denote by T (M) the set of all three-
dimensional tapes accepted by M . As usual, for each
X ∈ {D, N , U , A}, we denote, for example, by £[3-
XTM ] the class of sets of all the four-dimensional
tapes accepted by 4-XTM ’s. That is, £[4-XTM ] =
{T | T = T (M) for some 4-XTM M}. £[4-XTM

1dre means the smallest integer greater than or equal to r.



(L(m))], and £[4-XFA] also have analogous mean-
ings.

Let L(m): N→R be a function. For each tree t, let
LEAF (t) denote the leaf-size of t (i.e., the number of
leaves of t). We say that a 4-ATM M is Z(m) leaf-size
bounded if for all x with l1(x)=l2(x)=l3(x)=l4(x)=m
and for each computation tree t of M on x, LEAF (t)
≤ dZ(m)e.

By 4-ATM(L(m),Z(m)), we denote a Z(m) leaf-
size bounded 4-ATM(L(m)). Especially, a 4-
ATM(0,Z(m)) is denoted by 4-AFA(Z(m)). De-
fine £[4-ATM(L(m), Z(m))] = {T | T = T (m) for
some 4-ATM(L(m), Z(m)) M}. We use 4-AFA(k)
(4-UFA(k), 4-DFA) to denote a 4-ATM(0,k) (4-
UTM(0,k), 4-DTM(0)).

2 Unbounded Leaf-Size Hierarchy

A function L(m) : N → R is called four-
dimensionally space constructible if there is a strongly
4-ATM(L(m)) M such that for each m ≥ 1, there
exists some input tape x with l1(x) = l2(x) = l3(x)
= l4(x) = m on which M halts after its storage head
has marked off exactly bL(m)c2 cells of the storage
tape.(In this case, we say that M constructs the func-
tion L.)

We first show a hierarchy of complexity classes
based on leaf-size bounded computations.

The main theorem is

Theorem 2.1. Let k ≥ 1 be a positive integer. Let L
: N → N and L′ : N → N be any functions such that

(1) L is a four-dimensional space-constructible func-
tion such that L(m)k+1 ≤ m (m ≥ 1),

(2) lim
m→∞

L(m)L′(m)k/log m = 0, and

(3) lim
m→∞

L′(m)/L(m) = 0.

Then there is a set in £[4-ATM(L(m),L(m)k)], but
not in £[4-ATM(L(m),L′(m)k)].

Proof: Let M be a four-dimensional deterministic
Turing machine which constructs the function L. Let
Tk[L,M ] be the following set, which depends on k, L
and M :

2brc means the greatest integer smaller than or equal to r.

Tk[L,M ] ={x ∈ (
∑ × {0, 1})(4) | ∃m ≥ 2 [l1(x) =

l2(x) = l3(x) = l4(x) = m&∃r(r≤L(m)
[(when the tape h̃1(x) is presented to M ,
its read-write head marks off r cells of
the storage tape and then halts) & ∃i
(1 ≤ i ≤ m− 1) [h̃2(x[(1, 1, m, 1), rk+1,
rk+1,m, 1)]) = [h̃2(x[(1, 1, i, 1), (rk+1,
rk+1, i, 1)])]]]},

where
∑

is the input alphabet of M , and h̃1(h̃2) is
the projection which is obtained by extending the
mapping h1 :

∑ × {0,1} → ∑
(h2:

∑×{0,1}→{0,1})
such that for any c = (a,b) ∈ ∑ × {0,1}, h1(c) =
a(h2(c) = b).

We first show that Tk[L,M ] ∈ £[4-ATM(L(m),
L(m)k)]. Suppose that an input x with l1(x) = l2(x)
= l3(x) = l4(x) = m (m ≥ 2) is presented to M1. M1

directly simulates the action of M on h̃1. If M does
not halt, then M1 also does not halt, and will not ac-
cept x. If M1 finds out that M halts (in this case, note
that M1, has marked off at most cells of the storage
tape because M constructs the function L), then M1

existentially chooses some i(1 ≤ i ≤ m−1) and moves
its input tape head on x(1,1,i,1). After that, M1 uni-
versally tries to check that, for each 1≤j≤rk, where r
is the length of the non-blank part of the storage tape
just after M1 has found out that M halts,
h̃2(x[((j − 1)r + 1, (j − 1)r + 1, i, 1), (jr, jr, i, 1)])
=h̃2(x[((j − 1)r + 1, (j − 1)r + 1,m, 1), (jr, jr,m, 1)]).
That is, on x((j− 1)r + 1, (j− 1)r + 1, i, 1) (1≤j≤rk),
M1 enters a universal state to choose one of two further
actions. One action is to pick up and store the seg-
ment h̃2(x[((j−1)r+1, (j−1)r+1, i, 1),(jr, jr, i, 1)]) on
some track of the storage tape, to compare the segment
stored above with the segment h̃2(x[((j− 1)r + 1, (j−
1)r +1,m, 1),(jr, jr,m, 1)]), and to enter an accepting
state only if both segments are identical. The other
action is to continue moving to x(jr + 1, jr + 1, i, 1)
(in order to pick up the next segment h̃2(x[jr+1, jr+
1, i, 1), ((j+1)r, (j+1)r, i, 1)])) and compare it with the
corresponding segment h̃2(x[(jr+1, jr+1,m, 1), ((j +
1)r, (j + 1)r,m, 1)]).
Note that the number of pairs of segments which
should be compared with each other in the future can
be easily seen by using r cells of the storage tape. It
will be obvious that the input x is in Tk[L,M ] if and
only if there is an accepting computation three of M1

on x with at most L(m)k leaves. Thus Tk[L,M ] ∈
£[4-ATM(L(m), L(m)k)].

On the other hand, we can next show that Tk[L,M ]
/∈ £[4-ATM(L(m), L′(m)k)] by using the well-known
counting argument [3,7]. This completes the proof of
the theorem. 　 ¤

Corollary2.1. Let k ≥ 1 be a positive integer. Let L



: N → N and L′ : N → N be any functions satisfying
the condition that L′(m)≤L(m)(m≥1) and satisfying
conditions (1), (2) and (3) described in Theorem 2.1.
Then,
£[4-ATM(L(m),L′(m)k)](£[4-ATM(L(m),L(m)k)].

For any r in N, log(r)m be the function defined as
follows :

log(1)m =

{
0 (m = 0)
logm (m ≥ 1),

log(r+1)m =
{

log(1)(log(r)m).

As shown in Theorem2.1 of [8], the function log(r)m(r
≥ 1) is three-dimensionally space-constructible, and
thus four-dimensionally space-constructible. It is easy
to see that for each r ≥ 1, log(r+1)m ≤ log(r)m(m ≥ 1)
and lim

m→∞
log(r+1) m/log(r) m = 0. Further, for each r

≥ 2 and each k ≥ 1, lim
m→∞

log(r) m(log(r+1) m)k/log m

= 0. From these facts, we have the following.

Corollary2.2. For any r ≥ 2 and any k ≥ 1,
£[4-ATM(log(r) m,(log(r+1) m)k) (

£[4-ATM(log(r) m,(log(r) m)k).

3 Constant Leaf-Size Hierarchy

We next investigate a constant leaf-size hierarchy
: Are k + 1 leaves better then k? We first show
that in the case of an alternating Turing machine with
only universal states, no hierarchy exists for any space
bound.

Theorem 3.1. For any k∈N and any function L(m),

£[4-UTM (L(m), k)] = £[4-DTM (L(m))].

Proof: Given a k leaf-size bouded 4-UTM M
and an input tape x, a 4-DTM M ′ performs a
depth-first-search on the computation tree of M on x
without any extra cells of the working tape : Normal
tree-search method needs one stack for backtracking,
Instead, M ′ adopts only the forward tracking from the
root to each leaf and uses finite internal memories in
the finite control. Note that since M has constant
leaves, the branching structure of universal configura-
tions of M on x is also constant. After each traversal
of a path and finding out its leaf is labeled with an
accepting configuration M ′ adds the newly obtained
information about the tree structure into a memory
cell of the finite control. Then M begins to walk from
the root to the next leaf, whose route can be specified

by referring the memories of the finite control. When
the whole travel have been done and if M is surely k
leaf-size bouded, M ′ enters an accepting state. Note
that M ′ accepts exactly T (M) and that M ′ is L space-
bouded if and only if M is L space-bouded. 　 ¤

Corollary3.1. For any k ∈ N,

£[4-UFA (k)] = £[4-DFA].

In contrast to universal machines, we can show that
there exists an infinite hierarchy of o(logm) space-
bouded four-dimentional alternating Turing machines
based on leaf-size by using the block of input tape and
the counting argument[3,7].

Theorem3.2. For each k ∈ N,if L(m)=o(logm), then

£[4-ATM (L(m), k)] ( £[4-ATM (L(m),k + 1)].

Corollary3.2. For each k ∈ N,

£[4-AFA (k)] ( £[4-AFA (k + 1)].
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