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Abstract
It is conjectured that the three-dimensional pat-

tern processing has its our difficulties not aris-
ing in two-dimensional case. One of these dif-
ficulties occurs in recognizing topological proper-
ties of three-dimensional patterns because the three-
dimensional neighborhood is more complicated than
two-dimensional case. Generally speaking, a property
or relationship is topological only if it is preserved
when an arbitrary ’ rubber-sheet ’ distortion is applied
to the pictures . For example, adjacency and connect-
edness are topological ; area, elongatedness, convexity,
straightness, etc. are not. In recent years, there have
been many interesting papers on digital topological
properties. For example, an interlocking component
was defined as a new topological property in three-
dimensional digital pictures, and it was proved that no
one marker automaton can recognize interlocking com-
ponents in a three-dimensional digital picture. In this
paper, we deal with recognizability of topological com-
ponents by three-dimensional Turing machines, and
investigate some properties.

KeyWords : digital geometry,interlocking compo-
nent, one marker automaton, three-dimensional au-
tomaton, Turing machine, topological component

1 Introduction
Digital geometry has played an important role in

computer image analysis and recognition[3]. In par-
ticular, there is a well-developed theory of topolog-
ical properties such as connectedness and holes for
two-dimensional arrays[4]. On the other hand, three-
dimensional information processing has also become
of increasing interest with the rapid growth of com-
puted tomography, robotics, and so on. Thus it has
become desirable to study the geometrical proper-
ties such as interlocking components and cavities for
three-dimensional arrays[2,5]. In[2], interlocking com-
ponents was proposed as a new topological property

of three-dimensional digital pictures : Let S1 and S2

be two subsets of the same three-dimensional digital
picture. S1 and S2 are said to be interlocked when
they satisfy the following conditions:

(1) S1 and S2 are toruses,
(2) S1 goes through a hole of S2,
(3) S2 goes through a hole of S1.

The interlocking of S1 and S2 is illustrated in Fig.1.
This relation may be considered as a chainlike connec-
tivity.

Fig. 1: Interlocking components.

It is proved that no one marker automaton can rec-
ognize interlocking components in a three-dimensional
digital picture in [2]. In this paper, we investigate
recognizability of topological properties such as inter-
locking components by three-dimensional Turing ma-
chines.

2 Preliminaries

Definition 2.1. Let Σ be a finite set of symbols. A
three-dimensional tape over Σ is a three-dimensional
rectangular array of elements of Σ. The set of all three-
dimensional tapes over Σ is denoted by Σ(3). Given



a tape x ∈ Σ(3), for each j(1≤j≤3), we let lj(x) be
the length of x along the jth axis. When 1≤ij≤lj(x)
for each j(1≤ j≤3), let x(i1, i2, i3) denote the symbol
in x with coordinates (i1, i2, i3), as shown in Fig. 2.
Furthermore, we define

x[(i1, i2, i3), (i′1, i
′
2, i

′
3)],

when 1≤ij≤i′j≤lj(x) for each integer j(1≤j≤3), as the
three-dimensional tape y satisfying the following :

(i) for each j(1≤j≤3), lj(y)=i′j − ij + 1;

(ii) for each r1,r2,r3 (1≤r1≤l1(y), 1≤r2≤l2(y),
1≤r3≤l3(y), y(r1, r2, r3)=x(r1 + i1−1, r2 + i2−1,
r3 + i3 − 1).

Fig. 2: Three-dimensional input tape.

Definition 2.2. A three-dimensional nondetermi-
nistic one-marker automaton 3-NM1 is defined by the
six-tuple

M = (Q, q0, F, Σ, {+,−}, δ),
where

(1) Q is a finite set of states;

(2) q0∈Q is the initial state;

(3) F⊆Q is the set of accepting states;

(4) Σ is a finite input alphabet (]/∈Σ is the boundary
symbol);

(5) {+,−} is the pair of signs of presence and absence
of the marker; and

(6) δ: (Q×{+,−}) × ((Σ∪{]}) × {+,−})→
2(Q×{+,−})×((Σ∪{]}) × {+,−}) × {east,west,so-
uth,north,up,down,no move}) is the next-move
function, satisfying the following: For any
q,q′∈Q, any a,a′ ∈ Σ, any u,u′,v,v′ ∈ {+,−},
and any d ∈ {east,west,south,north,up,down,no

move}, if ((q′,u′),(a′,v′),d)∈δ
((q,u),(a,v)) then a=a′, and
(u,v,u′,v′)∈{(+,−,+,−),(+,−,−,+),(−,+,−,+),(−
,+,+,−),(−,−,−,−)}.

We call a pair (q,u) in Q×{+,−} an extended state,
representing the situation that M holds or does not
hold the marker in the finite control according to the
sign u = + or u = −, respectively. A pair (a,v) in
Σ× {+,−} represents an input tape cell on which the
marker exists or does not exsit according to the sign
v = + or v = −, respectively.

Therefore, the restrictions on δ above imply the fol-
lowing conditions. (A) When holding the marker, M
can put it down or keep on holding. (B) When not
holding the marker, and (i) if the marker exists on the
current cell, M can pick it up or leave it there, or (ii)
if the marker does not exist on the current cell, M
cannot create a new marker any more.

Definition 2.3. Let Σ be the input alphabet of 3-
NM1 M . An extended input tape x̃ of M is any three-
dimensional tape over Σ×{+,−} such that

(i) for each j(1≤j≤3), lj(x̃)=lj(x),

(ii) for each i1(1≤i1≤l1(x̃)), i2(1≤i2≤l2(x̃)), and
i3(1≤ i3≤l3(x̃)), x̃(i1, i2, i3) = x(i1, i2, i3, u) for
some u ∈ {+,−}.

Definition 2.4. A configuration of 3-NM1 M =
(Q, q0, F, Σ, δ) is an element of

((Σ ∪ {]})× {+,−})(3) × (Q× {+,−})×N3,

where N denotes the set of all nonnegative inte-
gers. The first component of a configuration c =
(x̃,(q, u),(i1, i2, i3)) represents the extended input tape
of M . The second component (q, u) of c represents the
extended state. The third component (i1, i2, i3) of c
represents the input head position. If q is the state
associated with configuration c, then c is said to be
an accepting configuration if q is an accepting state.
The initial configuration of M on input x is

IM (x) = (x−, (q0,+), (1, 1, 1)),

where x− is the special extended input tape of
M such that x−(i1, i2, i3)=(x(i1, i2, i3),−) for each
i1, i2, i3 (1≤i1≤l1(x̃)),1≤i2≤l2(x̃,1≤i3≤l3(x̃)). If M
moves determinately, we call M a three-dimensional
deterministic one-marker automaton 3-DM1.

Definition 2.5. A five-way three-dimensional
Turing machine is defined by the six-tuple

M = (Q, q0, F, Σ, Γ, δ),

where



(1) Q is a finite set of states;

(2) q0∈Q is the initial state;

(3) F⊆Q is the set of accepting states;

(4) Σ is a finite input alphabet (]/∈Σ is the boundary
symbol);

(5) Γ is a finite storage-tape alphabet (B∈Γ is the
blank symbol); and

(6) δ⊆(Q×(Σ∪{]})×Γ)×(Q×(Γ−{B})×{east,west,
south,north,down,no move}×{right,left,no
move}).

If M moves determinately (nondeterminately), we
call M a five-way three-dimensional deterministic
(nondeterministic) Turing machine FV3-DTM
(FV3-NTM).

Let L: N→R be a function. A five-way three-
dimensional Turing machine M is said to be L(m)
space bounded if for all m≥1 and for each x with
l1(x)=l2(x)=l3(x)=m, if x is accepted by M , then
there is an accepting computation path of M on x
in which M uses no more than L(m) cells of the
storage tape. We denote an L(m) space-bounded
FV3-DTM (FV3-NTM) by FV3-DTM(L(m)) (FV3-
NTM(L(m))).

Definition 2.6. Let T (M) be the set of three-
dimensional tapes accepted by a machine M , and
let £[3-DM1]={T |T (M) for some 3-DM1 M}. £[3-
NM1], etc. are defined in the same way as £[3-DM1].

We can easily derive the following theorem by using
ordinary technique[6].

Theorem 2.1. For any function L(m) ≥ log m2,
£[FV 3-NTM(L(m))]⊆Uc>0 £[FV 3-DTM(2c(L(m)))
].

3 Simulation of three-dimensional
one-marker automata by three-
dimensional Turing machines

In this section, we first investigate the suffi-
cient spaces (i.e., upper bounds) for five-way three-
dimensional Turing machines to simulate three-
dimensional one-marker automata[6].

Theorem 3.1. £[3-DM1]
⊆£[FV3-NTM(m2 log m2)].

Proof : Suppose that a 3-DM1 M = (Q, q0, F, Σ, δ)
is given. We partition the extended states Q×{+,−}
into disjoint subsets Q+ = Q×{+} and Q− = Q×{−}
which correspond to the extended states when M is

holding and not holding the marker in the finite con-
trol, respectively. We assume that M has a unique
accepting state qa, i.e., |F | = 1. In order to make our
proof clear, we also assume that M begins to move
with its input head on the southmost and eastmost
bottom boundary symbols ]’s of input tape , i.e., po-
sition (l + 1,m + 1, n + 1) and, when M accepts an
input, it enters the accepting state at the same posi-
tion (l + 1,m + 1, n + 1) with the marker held in the
finite control.

Suppose that an input tape x with l1(x) = l, l2(x) =
m, and l3(x) = n is given to M . For M and x, define
three types of functions f↑−h ,f↑+h and f↓−h .

f↑−h (q−, i, j) = (q′−, i′, j′): Suppose that we make
M start from the configuration (x−,q−,(i,j,h−1)), i.e.,
no marker existing either on the input x or in the finite
control of M . After that, if M reaches the hth plane
of x in some time, the configuration corresponding to
the first arrival is (x−,q′−,(i′,j′,h)),

f↑+h (q+, i, j) = (q′+, i′, j′): Suppose that we make
M start from the configuration (x−,q+,(i,j,h − 1)),
i.e., holding the marker in the finite control of M .
After that, if M reaches the hth plane of x with its
marker held in the finite control in some time (so,
when M puts down the marker on the way, it must
return to this position again and pick up the marker),
the configuration corresponding to the first arrival is
(x−,q′+,(i′,j′,h)),

f↓−h (q−, i, j) = (q′−, i′, j′): Suppose that we make
M start from the configuration (x−,q−,(i,j,h+1)), i.e.,
no marker existing either on the input tape or in the
finite control of M . After that, if M reaches the hth

plane of x in some time, the configuration correspond-
ing to the first arrival is (x−,q−,(i′,j′,h)),

l: M never reaches the hth plane of x.
Then, we can show that there exists an FV3-

NTM(m2 log(m2)) M ′ such that T (M ′)=T (M).
Roughly speaking, while scanning from the top plane
down to the bottom plane of the input , M ′ guesses
f↓−h , constructs f↑−h+1 and f↑+h+1, checks f↓−h−1, and fi-
nally at the bottom plane of the input, M ′ decides by
using f↑−t+1 and f↑+t+1 whether or not M accepts x. In or-
der to record these mappings for each h, O(m2) blocks
of O(log m2) size suffice, so in total, O(m2 log m2) cells
of the working tape suffice. It will be obvious that
T (M)=T (M ′). ¤

From Theorems 2.1 and 3.1, we get the following.

Corollary 3.1. £[3-DM1]
⊆£[FV 3-DTM(2O(m2 log m2))].

We next show that m4 space is sufficient for FV3-
NTM’s to simulate 3-NM1’s. The basic idea of the
proof are the same as those of Theorem 3.1.



Theorem 3.2. £[3-NM1]⊆£[FV 3-NTM(m4)].

From Theorems 2.1 and 3.1, we get the following.

Corollary 3.2. £[3-NM1]
⊆£[FV 3-DTM(2O(m4))].

Next, we show that the algorithms described in the
previous section are optimal in some sense.

Definition 3.1. Let x be in Σ(3) (Σ is a finite set
of symbols) and l1(x)=l2(x) = m. For each r (1≤r≤
Q[l3(x)/m2]) (where Q[l3(x)/m2] denotes the quotient
when l3(x) is divided by m2),

x[(1, 1, (r − 1)m2 + 1), (m,m, rm2)]

is called the rth (m,m)-block of x. We say that the
tape x has exactly c(m, m)-blocks if l3(x) = cm2,
where c is a positive integer.

Definition 3.2. Let (m1,m1),(m2,m2),. . . be a se-
quence of points (i.e., pairs of three natural numbers),
and let {(mi,mi)} denote this sequence. We call a se-
quence {(m1,m1)} the regular sequence of points if
(mi,mi) 6=(mj ,mj) for i 6=j.

Lemma 3.1. Let {x ∈ {0, 1}(3)| ∃m≥1 [
l1(x)=l2(x)=l3(x)=m & l2(x)=m & (each plane of
x contains exactly one ‘1’) & ∃d≥2[(x has exactly d
(m,m)-blocks, i.e., l3(x) = dm2) & (the last (m,m)-
blocks is equal to some other (m,m)-block)]]}. Then,

(1) T1 ∈ £[3-DM1], but

(2) T1 /∈£[FV 3-DTM(2L(m))] (so, T1 /∈£[FV 3-
NTM(L(m))]) for any function L(m) such
that

limi→∞[L(mi)/(m2
i log(m2

i ))] = 0
for some regular sequence of points {(mi,mi)}.
Proof : (1) We construct a 3-DM1 M accepting T1 as
follows. Given an input x with l1(x)=l2(x)=l3(x)=m,
M first checks, by sweeping plane by plane, that each
plane of x contains exactly one ‘1,’ and M then checks,
by making a zigzag of 45◦-direction from top plane to
bottom plane, that x has exactly d (m,m)-blocks for
some integer d ≥ 2. After that, M tests by utilizing its
own marker whether the last (m, m)-block is identical
to some other (m, m)-block: In order to check whether
the pth plane of the hth (m)-block is identical to the
pth plane of the last (m)-block (1≤p≤m2, 1≤h≤d), M
first puts the marker on the position (i,j,m2(h−1)+p).
After that, M vertically moves down until encounters
the bottom boundary, after which it moves up (m2−p)
plane by making a zigzag of 45◦-direction. At this
time, M arrives at the pth plane of the last (m,m)-
block. M then finds the ‘1’ position on the plane and

moves up vertically from this position. In this course,
each time M meets a ‘1’ position, it checks whether or
not there is a marker on the plane (containing the ‘1’
position). In this way, M enters an accepting state just
when it finds out some (m,m)-block, each of whose
planes is identical to the corresponding plane of the
last (l, m)-block. It will be obvious that T (M)=T1.

(2) Suppose to the contrary that there exists an
FV3-DTM(2L(m)) M accepting T1, where L(m) is a
function such that

limi→∞[L(mi)/(m2
i log(m2

i ))] = 0

for some regular sequence of points {(mi,mi)}. Then,
by using the well-known technique [6], we can get the
desired result. ¤

From Lemma 3.1., we can conclude as follows.

Theorem 3.3. To simulate 3 − DM1’s, (1) FV 3-
NTM ’s require Ω(m2 log(m2)) space and (2) FV 3-
DTM ’s require 2Ω(m2 log(m2)) space.

Next, we can get the following lemma by using the
same technique as in the proof of Lemma 3.1.

Lemma 3.2. Let T2={x ∈ {0, 1}(3)| ∃m ≥ 1 [ l1(x)=
l2(x)=l3(x)=m & & ∃d ≥ 2 [(x has exactly d (m,m)-
blocks, i, e., l4(x)=dm2) & (the last (m,m)-block is
different from any other (m,m)-block)]]}. Then,

(1) T2 ∈ £[3-NM1], but

(2) T2 /∈ £[FV 3-DTM(2L(m))] (so, T2 /∈£[FV 3-
NTM(L(m))]) for any function L such that
limi→∞[L(mi)/(m4

i )] = 0 for some regular
sequence of points {(mi,mi)}.

From Lemma 3.2., we can conclude as follows.

Theorem 3.4. To simulate 3-NM1’s,

(1) FV 3-NTM ’s require Ω(m4) space, and

(2) FV 3-DTM ’s require 2Ω(m4) space.

4 Recognizability of interlocking com-
ponents in three-dimensional images

In this paper, we show that interlocking compo-
nents are not recognized by any space-bounded three-
dimensional Turing machines.

First of all, we consider a three-dimensional input
tape T3 that is 7 units in thickness. So, for some m,
T3={ (i1,i2,i3) | 1≤i1,i2≤ m+2,1≤i3≤7 }.
Fig.3(a)represents T3. Now we define two different 5
× 5× 5 patterns as shown in Fig.3(b)(c). Then we
consider an arbitrary n-by-n matrix of those 5× 5×
5 patterns (see Fig.3).



Fig. 3: Three-dimensional input tape including inter-
locking components T3[2].

Then, we can get the following lemma from Lemma
2.1 in [2].

Lemma 4.1. 3-DM , cannnot recognize interlocking
components of an arbitrary given digital picture.

From Theorem 3.3 and Lemma 4.1, we can get the
following.

Theorem 4.1. Interlocking components are
not accepted by any FV 3-DTM (L(m))(FV 3-
NTM(L(m))) for any function L(m)
such that limm→∞[L(m)/2m2log m2]=0
(limm→∞[L(m)/m2log m2] = 0).

Next, we can get the following lemma by using a
technique similar to that in the proof of Lemma 2.1 in
[2].

Lemma 4.2. 3-ND1 cannnot recognize interlocking
components of an arbitrary given digital picture.

From Theorem 3.4 and Lemma 4.2, we can get the
following.

Theorem 4.2. Interlocking components are
not accepted by any FV 3-DTM(L(m)) (FV 3-
NTM(L(m))) for any function L(m) such that

limm→∞[L(m)/2m4
] = 0 (limm→∞[L(m)/m4] = 0).

5 Conclusion

In this paper, we investigated recognizability
of topological components by three-dimensional au-
tomata, and showed that interlocking components
are not recognized by any space-bounded three-
dimensional deterministic or nondeterministic Turing
machines. By the way, what is the situation for a two
or three marker automata, or for alternation (see [1])?
This question seems very intersting. We will deal with
the problem in further papers.
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