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Abstract
Informally, a parallel Turing machine (PTM) pro-

posed by Wiedermann is a set of identical usual se-
quential Turing machines (STM’s) cooperating on two
common tapes − storage tape and input tape. More-
over, STM’s which represent the individual processors
of the parallel computer can multiply themselves in
the course of computation. On the other hand, dur-
ing the past about twenty-five years, automata on a
three-dimensional tape have been proposed as compu-
tational models of three-dimensional pattern processing
and several properties of such automata have been ob-
tained. In this paper, we propose a three-dimensional
parallel Turing machine (3-PTM), and investigate its
some properties. Especially, we deal with a hardware-
bounded 3-PTM, whose inputs are restricted to cubic
ones. We believe that this machine is useful in mea-
suring the parallel computational complexity of three-
dimensional images.

Key Words: computational complexity, hardware-
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1 Introduction

A parallel Turing machine (PTM) is a set of identical
sequential Turing machines (STM’s) cooperating on two
common tapes − storage tape and input tape [5]. More-
over, STM’s which represent the individual processors
of the parallel computer can multiply themselves in the
course of computation. In [5] it is shown, for example,
that every PTM can be simulated by an STM in poly-
nomial time, and that the PTM cannot be simulated by
any sequential Turing machine in linear space.

In [1], two-dimensional version of PTM was investi-
gated. On the other hand, due to the advances in many
application areas such as computer vision, robotics,

and so forth, it has become increasingly apperant that
the study of three-dimensional pattern processing has
been of crucial importance. Thus, we think that the
research of three-dimensional automata as a compu-
tational model of three-dimensional pattern process-
ing has also been meaningful. During the past about
twenty-five years, automata on a three-dimensional tape
have been proposed and several properties of such au-
tomata have been obtained. In this paper, we propose
a three-dimensional parallel Turing machine (3-PTM),
and investigate its some properties. Especially, we deal
with a hardware-bounded 3-PTM, a variant of the 3-
PTM, whose inputs are restricted to cubic ones. The
hardware-bounded 3-PTM is a 3-PTM, the number of
whose processors is bounded by a constant or variable
depending on the size of inputs. The investigation of
hardware-bounded 3-PTM’s is more useful than that of
3-PTM’s from the practical point of view.

2 Preliminaries

Definition 2.1. Let Σ be a finite set of symbols, a
three-dimensional tape over Σ is a three-dimensional
rectangular array of elements of Σ. The set of all three-
dimensional tapes over Σ is denoted by Σ(3). Given a
tape x ∈ Σ(3), for each integer j (1 ≤ j ≤ 3), we let
lj(x) be the length of x along the jth axis. The set of
all x ∈ Σ(3) with l1(x) = n1,l2(x) = n2 and l3(x)=n3 is
denoted by Σ(n1,n2,n3). When 1 ≤ ij ≤ lj(x) for each
j (1 ≤ j ≤ 3), let x(i1, i2, i3) denote the symbol in x
with coordinates (i1, i2, i3). Furthermore, we define

x[(i1, i2, i3),(i′1, i
′
2, i

′
3)],

only when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j
(1 ≤ j ≤ 3), as the three-dimensional input tape y
satisfying the following conditions:

(1) for each j (1 ≤ j ≤ 3), lj(y) = i′j − ij + 1;



(2) for each r1, r2, r3 (1 ≤ r1 ≤ l1(y), 1 ≤ r2

≤ l2(y), 1 ≤ r3 ≤ l3(y)), y (r1,r2,r3) = x (r1+i1-1,
r2+i2-1, r3+i3-1). (We call x[(i1, i2, i3),(i′1, i

′
2, i

′
3)] the

[(i1, i2, i3),(i′1,i
′
2, i

′
3)]-segment of x.)

For each x ∈ Σ(n1,n2,n3) and for each 1 ≤ i1 ≤ n1, 1
≤ i2 ≤ n2, 1 ≤ i3 ≤ n3, x[(i,1,1),(i1,n2,n3)], x[(1,i2,1),
(n1,i2,n3)], x[(1,1,i3),(n1,n2,i3)], x[(i,1,i3),(i1,n2,i3)],
and x[(1,i2,i3),(n1,i2,i3)] are called the i1th (2-3) plane
of x, the i2th (1-3) plane of x, the i3th (1-2) plane
of x, the i1th row on the i3th (1-2) plane of x, and
the i2th column on the i3th (1-2) plane of x, and are
denoted by x(2-3)i1, x(1-3)i2, x(1-2)i3, x[i1, ∗, i3], and
x[∗, i2, i3], respectively.

Definition 2.2. Three-dimensional parallel Turing ma-
chine (denoted by 4-PTM) is a 10-tuple M = (Q, E,
U , qs, q0, Σ, Γ, F , δn, δf ), where

(1) Q = E ∪ U ∪ {q0} is a finite set of states;
(2) E is a finite set of nondeterministic states;
(3) U is a finite set of fork states;
(4) qs is the quiescent state;
(5) q0 ∈ Q - {qs} is the initial state;
(6) Σ is a finite input alphabet (# /∈ Σ is the bound-

ary symbol);
(7) Γ is a finite storage tape alphabet containing the

special blank symbol B;
(8) F ⊆ Q −{qs} is the set of accepting states;
(9) δn : E × (Σ ∪ {# }) × Γ →

2(Q−{qs})×(Γ−{B})×Din×Ds (where Din = {east,
west, south, north, up, down, no more} and Ds =
{left, right, no more}) is a next nondeterministic move
function; and

(10) δf : U× (Σ∪{# }) × Γ→ U1≤k≤∞ ((Q−{qs})×
(Γ − {B}) × Din × Ds) is a next fork more function
with the restriction that for each q ∈ U , each a ∈ Σ ∪
{# }, and each A ∈ Γ, if δ(q, a,A) = ((p1, c1, d11, d21),
(p2, c2, d12, d22), . . ., (pk, ck, d1k, d2k)), then c1 = c2 =
. . . = ck.

As shown in Figure.1, M has a read-only three-
dimensional rectangular input tape with boundary sym-
bols “#’s”, and one semi-infinite storage tape (extended
to the right), initially filled with the blank symbols. Fur-
thermore, M has inifinite processors, P1, P2, . . ., each
of which has its input head and storage-tape head. M
starts in the situation that (1) the processors P1 is in the
initial state q0 with its input head on the upper north-
westmost corner of the input tape and with its storage-
tape head on the leftmost cell of the storage tape, and
(2) each of other processors is in the quiescent state qs

with its input head on the upper northwestmost corner

Figure 1: Three-dimensional parallel Turing machine.

of the input tape and with its storage-tape head on the
leftmost cell of the stroage tape.

Five-way three-dimensional parallel Turing machine
(denoted by FV3-PTM) is a 3-PTM, input heads of
whose processors cannot move up. In this paper, we
are concerned with three-dimensional parallel Turing
machines whose input tapes are restricted to cubic
ones. Let L : N → N and H : N → N be func-
tions. A 3-PTM (FV3-PTM) M is called L(n) space-
bounded if for any n ≥ 1 and for any input tape x
with l1(x) = l2(x) = l3(x) = n, M on x uses at most
L(n) cells of the storage tape, and M is H(n) hardware-
bounded if for any n ≥ 1 and for any input tape x with
l1(x) = l2(x) = l3(x) = n, M on x activates at most
H(n) processors. We use the follwing notations:
· D3-PTM(L(n),H(n)): the class of sets of cu-

bic tapes accepted by L(n) space-bounded and
H(n) hardware-bounded deterministic 3-PTM ’s ·
N3-PTM(L(n),H(n)): the class of sets of cu-
bic tapes accepted by L(n) space-bounded and
H(n) hardware-bounded nondeterministic 3-PTM ’s ·
DFV3-PTM(L(n),H(n)): the class of sets of cu-
bic tapes accepted by L(n) space-bounded and H(n)
hardware-bounded deterministic FV3-PTM ’s · NFV3-
PTM(L(n),H(n)): the class of sets of cubic tapes ac-
cepted by L(n) space-bounded and H(n) hardware-
bounded nondeterministic FV3-PTM ’s

3 Main Results

This section mainly investigates accepting powers of
FV3-PTM’s, based on hardware complexity.



A function L : N → N is fully space constructible by
a k head one-dimensional deterministic Turing machine
if there is a k head one-dimensional deterministic Turing
machine [4] M such that for any n ≥ 1 and any input
word x of length n, M on x marks off exactly L(n) cells
of the storage tape and halts. (In this case, we say that
M constructs the function L.)

Theorem 3.1. Let H : N → N be a function which
satisfies the following (1), (2), and (3), where k ≥ 1 is
an integer :

(1) H is fully space constructible by a k head one-
dimensional deterministic Truing machine;

(2) ∃n0 ∈ N, ∀n ≥ n0 [H(n) ≥ k];
(3)

(
H(n)

2

) ≤ n
2 (n ≤ 2).

Furthermore, let H’ : N → N and L : N → N be
functions which satisfy the following (4) and (5):

(4) ∃n0 ∈ N, ∀n ≥ n0 [
(
H′(n)

2

) ≤ (
H(n)

2

)
];

(5) max { H ′(n)2
(
H(n)

2

)
log n,

H ′(n)2
(
H(n)

2

)
log L(n),

L(n)H ′(n)
(
H(n)

2

) } = o(n).
Then,
DFV 3-PTM(H(n),H(n)) − NFV 3-PTM(L(n),

H ′(n)) 6= φ.

Proof: Let T (H) be the following set depending on the
function H in the theorem:

T (H) = { x ∈ {0, 1}(3) | ∃n ≥ 2
(
H(n)

2

)
[l1(x)=l2(x)

=l3(x)=l4(x)=n & ∀i(1 ≤ i ≤ (
H(n)

2

)
) [the ith plane of

x is identical with the (2
(
H(n)

2

)
+1-i)th plane of x]] }.

To prove the theorem, we show that T (H) ∈ DFV 3-
PTM (H(n), H(n)) − NFV 3-PTM (L(n),H(n)).
T (H) is accepted by an H(n) space-bounded and H(n)
hardware-bounded DFV 3-PTM M which acts as fol-
lows. Suppose that an input tape x with l1(x) =
l2(x) = l3(x) = n is presented to M . Let M1 be a
k head one-dimensional deterministic Turing machine
which constructs the function H. By simulating the ac-
tion of M1 on the first plane of x, the first k processors
P1, P2, . . . , Pk of M mark off exactly H(n) cells of the
storage tape.

After this, each processor Pi(2 ≤ i ≤ k) positions
its storage-tape head on the ith cell (from the left) of
the storage tape, and processor P activates processors
Pk+1, Pk+2, . . . , PH(n) in such a way that for each j
(k + 1 ≤ j ≤ H(n)), the storage-tape head of Pj is
positioned on the jth cell (from the left) of the stor-
age tape. Then P1 positions the input head at the
northwsetmost corner of the (2

(
H(n)

2

)
+ 2 − H(n))th

plane of x, which for each i (2 ≤ i ≤ H(n)), Pi po-

sitions the input head on the northwestmost corner of
the (H(n) − i + 1)th plane of x. And P1 systemati-
cally traverses the (2

(
H(n)

2

)
+ 2 − H(n))th plane, . . .,

the 2
(
H(n)

2

)
th plane (from the first column to the last

column in each plane, and from the first row to the last
row in each column), and compares these planes with
the (H(n)−1)th plane, . . . , the first plane, respectively,
by using the information from P2, P3, . . . , PH(n).

These input heads are then positioned at the north-
westmost end of the H(n)th plane of x. The same pro-
cedure is used inductively to verify that H(n)th plane
through the (2

(
H(n)

2

)
+ 1−H(n))th plane has a desired

form.
Next, we show that T (H) /∈ NFV 3-PTM (L(n),

H’(n)). Suppose to the contrary that there is an NFV 3-
PTM (L(n),H’(n)) M ’ accepting T (H). Let s and t be
the numbers of states of the finite control of each pro-
cessor and storage tape symbols of M ’, respectively. For
large n ≥ 2

(
H(n)

2

)
, let

V (n) = { x ∈ {0, 1}(3) | l1(x) = l2(x) = l3(x) = n &
∀i (1 ≤ i ≤ (

H(n)
2

)
) [the ith plane of x is identical with

the (2
(
H(n)

2

)
+1− i)th plane of x] & [(1, 1, 2

(
H(n)

2

)
+1),

(n, n, n)] ∈ {0}(3) }.
Below, we consider the computation of M’ on input

tapes in V (n). Clearly, each tape x in V (n) is in T (H),
and so x is accepted by M’.

A configuration of M’ is an infinite-tuple (α,
((i1, j1, k1), q1, h1), ((i2, j2, k2), q2, h2), ..., ((im, jm, km),
qm, hm), . . . ) where α is the non-blank contents of the
storage tape of M’, and for each m ≥ 1, (im, jm, km), qm

and hm are the input head position, the state of the fi-
nite control and the position of storage-tape head of the
mth processor of M’, respectively. The type of a config-
uration C =(α, ((i1, j1, k1), q1, h1), ((i2, j2, k2), q2, h2),
..., ((im, jm, km), qm, hm), . . . ), denoted by Type(C),
is an infinite-tuple ([i1], ..., [im], . . .), where for each
m ≥ 1,

[im] = { im if im ≤ (
H(n)

2

)

2
(
H(n)

2

)
otherwise.

Let c1(x), c2(x), ..., clx(x) be the sequence of config-
urations of M’ during an (arbitrary selected) accepting
computation of M’ on a tape x in V (n). Here lx is the
length of this computation. Let d1(x), d2(x), . . . , dl′x(x)
be the subsequence obtained by selecting c1(x) and
all subsequent ci(x)’s such that Type(ci(x)) 6=
Type(ci+1(x)). We call d1(x), d2(x), . . . , dl′x(x) the pat-
tern of x. Let p(n) be the number of possible pattern of
M ′ on x in V (n). Since L′x ≤ H ′(n)(2

(
H(n)

2

)− 1) + 1 ≡
Q(x) (note that M ’ uses at most H’(n) processors when
it reads tapes in V (n)), we get the following inequality:

p(x) ≤ ((s(n + 1)(n + 1)(n + 1)L(n))H′(m)tL(n)
)Q(n).



Now we classify the tapes in V (n) according to their
patterns. There must exist a pattern d̂1, d̂2, . . . , d̂l which
corresponds to a set S(n) of at least 2n×n×(H(n)

2 ) / p(n)
tapes in V (n). Since

(
H′(n)

2

) ≤ (
H(n)

2

)
(from condition

(4) in the theorem), the same observation as in the proof
of Theorem 3 in [2] reveals that for any computation of
M ’ on an x ∈ V (n), there exists an index i such that
the ith plane of x and the (2

(
H(n)

2

)
+ 1 − i)th plane of

x are never being read simultaneously.
Let i0 be such a value for the pattern d̂1, d̂2, . . . , d̂l.

we now define a binary relation E on tapes in S(n) as
follows: For each u and v in S(n), let

uEv ⇔ ∀i(/∈ {i0, i0, 2
(
H(n)

2

)
+ 1− i0) [ith planes of u

and v are identical].
Obviously the relation E is an equivalence relation,

and there are q(n) = 2n2((H(n)
2 )−1) E-equivalence classes

of tapes in S(n). From condition (5) in the theorem, we
can easily show that |S(n)| > q(n) for large n. There-
fore, there exist two different tapes in S(n) which belong
to the same equivalence class. Let x and y be such two
different tapes in S(n). And let z be the tape obtained
from x by replacing the (2

(
H(n)

2

)
+ 1− i0)th plane with

the (2
(
H(n)

2

)
+ 1 − i0)th plane of y. By an argument

similar to that in the proof of theorem 1 in [6], it can
be shown that there is an accepting computation of M ’
on z. Consequently, z must be accepted by M ’. This
contradicts the fact z is not in T (H). ¤

We consider the following functions:

· log(1)n = { 0 (n = 0)
dlogne (n ≥ 1),

and for each r ≥ 1,
· log(r+1)n = log(1)(log(r)n).

It is shown in [3] that the function log(k)n (k ≥ 1) are
fully space-constructible by three head one-dimensional
deterministic Turing machines. From this fact and The-
orem 3.1, we have:

Corollary 3.1. For each k ≥ 3,
DFV 3-PTM (log(k)n, log(k)n) − NFV 3-PTM

(log(k)n, log(k+1)n) 6= φ.

Corollary 3.2. Fpr each X ∈ {D,N} and each k ≥ 3,
XFV 3-PTM (log(k)n, log(k+1)n) ⊆ XFV 3-PTM

(log(k)n, log(k)n).
Letting H(n) = k + 1 (where k is a positive integer),

H’(n) = k, and L(n) = o(n) in Theorem 3.1, we have :
DFV 3-PTM (k +1, k +1) − NFV 3-PTM (0(n), k)

6= φ.

From this and from the obvious fact that

DFV 3-PTM (k+1, k+1) = DFV 3-PTM(1, k+1),
we have the following corollary.

Corollary 3.3. For any integer k ≥ 1,
DFV 3-PTM (1, k+1) −NFV 3-PTM (o(n), k) 6= φ.

4 Conclusion

This paper investigated fundamental properties
of three-dimensional parallel Turing machines with
bounded number of processors. We conclude the pa-
per by giving several open problems.

(1) What is a relationship between the accepting
powers of FV 3-PTM ’s and 3-PTM ’s?

(2)What is a relationship between the accepting pow-
ers of deterministic and nondeterministic FV 3-PTM ’s?

(3) What is a hierarchy of the accepting powers of
FV 3-PTM ’s, based on the hardware complexity de-
pending on the side-length of input tapes?
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