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Abstract 

 
This paper develops the theory for a fault-tolerant, 
permanent magnet biased, homopolar magnetic bearing. 
If some of the coils or power amplifiers suddenly fail, 
the remaining coil currents change via a novel 
distribution matrix such that the same magnetic forces 
are maintained before and after failure. Lagrange 
multiplier optimization with equality constraints is 
utilized to calculate the optimal distribution matrix that 
maximizes the load capacity of the failed bearing. The 
overall load capacity of the bearing actuator is reduced 
as coils fail.  

 
 
1  Introduction 
 

A magnetic bearing system is a mechatronics 
device consisting of a magnetic force actuator (an active 
magnetic bearing, or AMB), motion sensors, power 
amplifiers, and a feedback controller (DSP), that 
suspends the spinning rotor magnetically without 
physical contact, and suppresses vibrations. Magnetic 
bearings find greater use in high speed, high 
performance applications since they have many 
advantages over conventional fluid film or rolling 
element bearings, such as lower friction losses, 
lubrication free, temperature extremes, no wear, quiet, 
high speed operations, actively adjustable stiffness and 
damping, and dynamic force isolation. Though magnetic 
bearings find more applications in industry, reliability 
requirements limit magnetic bearings from being used in 
highly critical applications. Failure of components such 
as coils or power amplifiers in magnetic bearings may 
result in a failure of the entire system.  

Fault tolerant control provides continued operation 
of magnetic bearing actuators even if its power 
amplifiers or coils suddenly fail.  Much research has 
been devoted to fault-tolerant heteropolar magnetic 
bearings. Maslen and Meeker [1] introduced a fault-
tolerant 8-pole heteropolar magnetic bearing actuator 
with independently controlled currents and 

experimentally verified it in [2]. Flux coupling in a 
heteropolar magnetic bearing allows the remaining coils 
to produce force resultants identical to the unfailed 
bearing, if the remaining coil currents are properly 
redistributed. Na and Palazzolo [3, 4] also investigated 
the optimized realization of fault-tolerant magnetic 
bearing actuators and experimentally showed it on a 
flexible rotor such that rotor displacements after failure 
can be maintained close to the displacements before 
failure for up to all combinations of 4 coils failed and 
certain combinations of 5 coils failed out of 8 coils. Na 
and Palazzolo [5] introduced a fault-tolerant control 
scheme utilizing the grouping of currents to reduce the 
required number of controller outputs and to remove 
decoupling chokes. 

The present work describes the theory and 
following numerical analysis for the novel fault-tolerant 
homopolar magnetic bearing. Energy efficient 
homopolar magnetic bearings with fault tolerant 
capability may find great use in some applications such 
as flywheel energy storage systems and momentum 
wheels. 

 
2  Bearing Model 
 

The schematic drawing of an 8-active pole, 
permanent magnet biased homopolar magnetic bearing is 
shown in Fig. 1.  
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Figure 1.  Schematic of an 8-Active Pole, 

Permanent Magnet Biased Magnetic Bearing 



Assuming that eddy current effects and material 
path reluctances are neglected, Maxwell’s equations are 
reduced to the equivalent magnetic circuit for the 
homopolar magnetic bearing. The feedback control 
voltages  and , determined with any type of 
control law and measured rotor motions, are distributed 
to each pole via 

cxv cyv

T~  in normal operation, and create 
effective stiffness and damping of the bearing to suspend 
the rotor around the bearing center position. With the 
uniform current distribution with T~  as well as the 
symmetric bearing geometries, magnetic forces are 
( , ) decoupled and vary linearly with respect to 
control currents and rotor displacements around the 
bearing center position. If symmetry is lost due to a coil 
failure, magnetic forces are no longer decoupled and 
linear with respect to control currents and rotor 
displacements, and even it may be difficult to maintain 
stable control. Reassigning the remaining currents with a 
redifined current distribution scheme may remedy this 
by providing the same decoupled magnetic forces as 
those before failure. Magnetic forces developed in the 
active pole plane are described as;                                          
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3   Bias Linearization 
 

The magnetic forces in Eqs. (1) and (2) can be 
linearized about the bearing center position and the zero 
control voltages by using Taylor series expansion. The 
linearized magnetic forces are; 
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The position stiffnesses are defined as; 
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where              
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The parameters ϕ  and ω  represent either x  or . The 
position stiffnesses of the homopolar bearing remain 
unchanged with a coil failure since the position 
stiffnesses are only influenced by the bias flux driven 
with permanent magnets. The voltage stiffnesses are 
defined as; 
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Employing an optimal current distribution matrix T  
may decouple the  linearized forces of the failed bearing, 

and even maintain the same decoupled magnetic forces 
as those of an unfailed magnetic bearing. Maslen and 
Meeker [1] introduced a linearization method which 
effectively decouple the control forces for a failed 
bearing by choosing a proper distribution matrix. 
Though not identified in [1], the direct voltage stiffness 

 is used to yield the same linearized control forces as 
those of the unfailed bearing. The necessary conditions 
to yield the same decoupled magnetic control forces are; 
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If the distribution matrix T̂  is determined such that Eq. 
(20) should be met, the magnetic forces at bearing center 
position in Eqs. (12) and (13) lead to; 

           cxvx vkf = ,                                                    (7) cyvy vkf =

Equations (6) can be written in 18 scalar forms, and then 
boils down to 10 algebraic equations if redundant terms 
are eliminated. The equality constraints to yield the same 
control forces before and after failure are; 
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4 Optimal Distribution 
 
Some examples of distribution matrices are 

calculated for the 8-pole homopolar magnetic bearing 
with the nominal air gap 0 (0.508 mm), pole face area 

0 (602 mm
g

a 2), number of coil turns n (50 turns). It is 
assumed that permanent magnets are selected to produce 
bias flux density of 0.6 Tesla in the air gaps of the active 
pole plane. The design of the permanent magnets for a 
homopolar magnetic bearing is beyond the scope of this 
paper. The direct voltage stiffness vk  is then calculated 
as 106.651 N/volt. A distribution matrix for an 8-pole 
homopolar bearing with the 7th-8th coils failed operation 
is calculated as; 
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A distribution matrix with the 6th-7th-8th coils failed 
operation is calculated as; 
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A distribution matrix with the 5th-6th-7th-8th coils failed 
operation is calculated as; 
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Similarly, the distribution matrices can be calculated for 
a failed homopolar bearing up to all combinations of 5 
coils failed out of 8 coils. In the previous fault tolerant 
scheme with heteropolar magnetic bearings [3, 4], 
distribution matrix solutions do not exist for a certain 
combination of 5 failed coils (for example, no solution 
exists for 5 adjacent coils failed heteropolar bearings). 

The following system dynamics simulation 
illustrates the transient response of a rotor supported by 
magnetic bearings during a coil failure event. An 
unbalance force of  with (2.0 grams), (0.01 
m) and Ω (spinning speed) are applied at the two 
bearing locations. The distribution matrix of 

2Ωme m e

T~  is 
switched to  and when 4 adjacent coils failed 
at 0.02 seconds and then 5 adjacent coils failed at 0.04 
seconds. The rotor speed is held constant at 20,000 
RPM. Figures 2 shows transient response of the current 
inputs to the outboard bearing from the normal unfailed 
operation through the 5-6-7-8

5678T 45678T

th coils and 4-5-6-7-8th coils 
of the outboard bearing failed at 0.02 seconds and 0.04 
seconds, respectively. This indicates that very much the 
same rotordynamic responses are maintained throughout 
the series of failure events, while currents and fluxes in 
the homopolar magnetic bearing change significantly. 

 
Figure 2. Current Plot for a Series of Failures 
 

5   Conclusion 
 

A fault tolerant control scheme is developed for an 
energy efficient homopolar magnetic bearing. The 
homopolar bearing actuator using the fault tolerant 
control algorithm can preserve the same linearized 
magnetic forces by redistributing the remaining currents 
even if some components such as coils or power 
amplifiers suddenly fail. The distribution matrix T  of 
control voltages is determined by using the Lagrange 
Multiplier optimization with equality constraints for a 
failed bearing in a manner that the load capacity should 
be maximized. Simulations show that very much the 
same vibrations (orbits or displacements) are maintained 
throughout failure events while currents and fluxes 
change significantly with different distribution scheme. 
Only control currents as well as control fluxes are 
redistributed for the failed bearing while bias flux driven 
by permanent magnets remains constant. Less strict 
constraints of only 10 equations are required for the fault 
tolerant homopolar bearing to produce the same 
magnetic forces, while 12 constraint equations are 
required for the fault tolerant heteropolar bearing in [3]. 
This released conditions may give some benefits to the 
realization of fault tolerant homopolar bearings. The 
solution space of distribution matrices is extended for the 
homopolar bearing. The distribution matrices can be 
calculated for a failed homopolar bearing up to all 
combinations of 5 coils failed out of 8 coils. In the 
previous fault tolerant scheme with heteropolar magnetic 
bearings, no solutions exist for certain combinations of 5 
failed coils. The load capacities of the failed homopolar 
magnetic bearings are greatly increased compared to 
those of heteropolar magnetic bearings.  

Fault tolerance of the magnetic bearing actuator is 
achieved at the expense of additional hardware 
requirements and reduction of overall bearing load 
capacity. Therefore, the fault tolerant magnetic bearing 
should be designed enough to support loads even in case 
of a severe failure (5 coils failed out of 8 coils). 



Otherwise, disturbances from unbalance, runouts, and 
sideloads should be maintained at low level to prevent 
saturation. 
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