Spiking Neural P Systems with Inhibitory Axons

Rudolf FREUND

Marion OSWALD

Faculty of Informatics
Vienna University of Technology
Vienna, Austria

rudi@emcc.at

Abstract

We extend the original model of spiking neural P sys-
tems by adding inhibitory axons. We show how com-
putational completeness can already be obtained with
extended spiking neural P system with inhibitory ax-
ons, and we also exhibit that finite extended spiking
neural P systems with inhibitory axons characterize
the regular sets. As a specific application example, we
show how logical gates can be modelled with a static
simple variant of (extended) spiking neural P systems
with inhibitory axons.

1 Introduction

Based on the biological background of neurons send-
ing electrical impulses (also called spikes) along axons
to other neurons, in the area of neural computation
several new models have been introduced, e.g., see [4],
[6], [7]. P systems (membrane systems) have been in-
troduced as a formal model implementing the hierar-
chical structure of membranes in living organisms and
the biological processes in and between cells (an in-
troduction to this field can be found in [9], for the
actual state of the art in this area see [12]). Just re-
cently, combining the ideas of P systems and spiking
neurons, this led to a new variant of tissue P systems
(see [3]) called spiking neural P systems, e.g., see [5],
[10]. An extended version of spiking neural P systems
allowing to send different informations along the axons
between two neurons was investigated in [1].

In spiking neural P systems (see [5]), the contents
of a neuron consists of a number of so-called spikes.
The rules assigned to a cell allow us to send infor-
mation to other neurons in the form of electrical im-
pulses — spikes — which are summed up at the target
cell; the application of the rules depends on the con-
tents of the neuron. As inspired from biology, the
cell sending out spikes may be “closed” for a specific

marion@emcc.at

time period corresponding to the refraction period of
a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”) for
spiking again. In [1], an extended version of this origi-
nal model of spiking neural P systems was introduced
based on some other observations from biology: for
example, the length of the axon may cause a time de-
lay before a spike arrives at the target; moreover, the
spikes coming along different axons may cause effects
of different magnitude.

Another quite natural feature found in biology and
also used in the area of neural computation is that
of inhibitory neurons or connections between neurons.
Hence, in this paper we consider spiking neural P sys-
tems with inhibitory axons, thus extending again the
model of extended spiking neural P systems by consid-
ering inhibitory axons that allow for “closing” a neu-
ron for one step by sending a spike along such an in-
hibitory axon to this neuron from another one.

The rest of the paper is organized as follows: In the
next section, after giving some preliminary definitions,
we introduce the model of extended spiking neural P
system with inhibitory axons. In Section 3, we exhibit
some theoretical results for this new model of extended
spiking neural P system with inhibitory axons: finite
spiking neural P systems with inhibitory axons (where
the number of spikes that may be stored in each neu-
ron can be bounded) characterize the regular sets in
the same way as the well-known McCulloch-Pitt net-
works (e.g., see [8]); without any bounds on the num-
ber of spikes in the neurons we obtain computational
completeness as already shown for the other models of
spiking neural P systems. As a specific application, in
Section 4 we show how spiking neural P systems with
inhibitory axons can be used to specify /simulate logi-
cal gates. A short summary and an outlook to future
research conclude the paper.

2 Definitions

For the basic elements of formal language theory
needed in the following, we refer to any monograph
in this area, e.g., to [2] and [11]. We just list a few no-
tions and notations: V* is the free monoid generated
by the alphabet V under the operation of concate-
nation and the empty string, denoted by A, as unit
element; for any w € V*, |w| denotes the number of
symbols in w (the length of w). N denotes the set
of positive integers (natural numbers), N is the set of
non-negative integers, i.e., N = N, U{0}. The interval
of non-negative integers between k and m is denoted
by [k..m]. For any k € N, RE (N*) and REG (N*)
denote the sets of recursively enumerable and regular
subsets of N¥ respectively. REG ({a}) denotes the set
of regular languages over the alphabet {a} (observe
that there is a one-to-one correspondence between the
sets in REG ({a}) and the sets in REG (N)).

Extended spiking neural P systems with in-
hibitory axons

For the motivation and the biological background
of spiking neural P systems we refer the reader to [5].

An extended spiking neural P system with inhibitory
azrons is a construct

II=(m,S,R,F)

where

e m is the number of cells (or neurons); the neurons
are uniquely identified by a number between 1 and
m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

e S describes the initial configuration by assigning
an initial value (of spikes) to each neuron;

e R is a finite set of rules of the form
(i, E/a® — P,d) such that i € [l..m] (specify-
ing that this rule is assigned to cell i), E C
REG ({a}) is the checking set (the current num-
ber of spikes in the neuron has to be from FE if
this rule shall be executed), k¥ € N is the “num-
ber of spikes” (the energy) consumed by this rule,
P is a (possibly empty) set of productions of the
form (I,w) where I € [1..m] (thus specifying the
target cell), and w = @ (we also call @ inhibitor)
or w € {a}” is the weight of the energy sent along
the axon from neuron 4 to neuron [, and d is the
delay.

e F C [1..m] specifies the set of neurons which store
the output.

Starting from the initial configuration of the system
that is given by S, a transition from one configuration
to another one now works as follows: for each neuron
i, we first check whether we find an applicable rule
(i, E/ak — P, d) (i.e., the number of spikes in neuron
i coincides with the regular checking set E). If this is
the case and the neuron is not blocked due to the delay
of a previously applied rule, then the neuron “fires”,
i.e., for every production (I,w) occurring in the set
P the corresponding package (I,w) is sent from i to
neuron [; if d > 0, then the neuron is blocked for the
next d steps, i.e., it cannot apply another rule and,
moreover, all inputs arriving during the next d — 1
steps are ignored. Now for every neuron we have to
consider the following two cases:

e If in any of the packages just having arrived in
a neuron we find an inhibitor @, then neuron [is
blocked for one step, i.e., no rule can be applied
in neuron [and no input from other cells is taken
in this step.

e On the other hand, if in the packages just having
arrived in a neuron we find no inhibitor, for the
other packages (I,w) with w € {a}”, the weight
w in such package is added to the corresponding
number of spikes in neuron [(provided the neuron
is not closed for input).

A computation is a sequence of configurations start-
ing with the initial configuration given by S. The
result of a halting computation (where no neuron is
blocked, no rule can be applied anymore) then can be
found in the output neurons specified by F.

Note that in the system defined above, we did not
introduce any delay for the packages along the axons,
as e.g. done in [1]. The original version of spiking
neural P systems as defined in [5] corresponds with
a very restricted variant of extended spiking neural
P system with inhibitory axons where we do not use
inhibitors and, moreover, the number of spikes sent
from a neuron % to others is always fixed and (i)
either no spikes are emitted, which corresponds to
the case P = { } in the rule (i, E/a* — P) — such
a rule is called a forgetting rule —, or (ii) the rule
is of the form (i, E/a* — {(l,a) |l € M;}) for some
M; C [1..m] only depending on i — such a rule is called
a spiking rule. On the other hand, this variant can
easily be extended to spiking neural P systems with
inhibitory azons by also allowing rules of the form

(i, E/a® — {(l,a) | 1 € M;}U{(l,@) |l € N;})

for some N; C [1..m] only depending on 4, with M; N
N, ={}.

If we only allow the rules to be of the form
(i,E/ak' —>P) with £ = {al} for some [> 1 and
with all productions (I,w) being of the form w = a?
for some j > 0 or w = a, then such an extended spik-
ing neural P system with inhibitory axons is called
finite.

3 Theoretical Results

Extended spiking neural P systems without inhibitory
axons were shown to be computationally complete [1]
even if not using any delay in the neurons or axons,
which also proves the computational power of the sys-
tems introduced in this paper. Hence, we obtain the
following result:

Theorem 1. For every set L in RE (Nk), we can
construct an extended spiking neural P systems with
inhibitory axons II generating L.

It remains a challenging research topic for future
theoretical investigations whether inhibitory axons
could be used to obtain computational completeness
with various restrictions thereby trading inhibitory ax-
ons for some other features like forgetting rules.

Finite extended spiking neural P systems with in-
hibitory axons (where we only allow the rules to be
of the form (i, E/a* — P) with E = {a'} for some
[> 1 and with all productions (I, w) being of the form
w = a’ for some j > 0 or w = @) can only gener-
ate regular sets, because the number of spikes to be
stored in each neuron can be bounded (following the
construction given in [1] for extended spiking neural P
systems), i.e., we obtain the following result:

Theorem 2. Finite extended spiking neural P sys-
tems (with inhibitory axons) characterize REG (NF).

4 Simulating Logical Gates

In this section we restrict ourselves to spiking neural
P systems with inhibitory axons, i.e., all the rules are
of one of the following forms:

e (i,E/a” — { }); such a rule is called a forgetting
rule;

. (i,E/alc —{(l,a)|le M;}U{(,a)l|le N,}) for
some M;, N; C [l.m], M; " N; = { }, only de-
pending on ¢; such a rule is called a spiking rule.

The restriction to these kinds of rules allows us
to represent such a spiking neural P system with in-
hibitory azons by a directed graph as follows:

e the neurons are represented by the nodes of the
graph;

e the spiking rules and the forgetting rules are spec-
ified in the nodes;

e for each j € M; we draw a directed edge from 14
to 7 and mark it as excitatory edge;

e for each j € N; we draw a directed edge from i to
j and mark it as inhibitory edge.

Using spiking neural P systems with inhibitory ax-
ons, we now can easily represent (simulate) logical
gates. For example, the simulation of a NAND-gate
by a spiking neural P systems with inhibitory axons
can be seen in Figure 1; it corresponds to a system

B A{(1,a),(2,4), (3,), R, {3}})

with R containing the rules

(1,{a’}/a = {(3,0)}), (1, {a}/a — { }),

(2,{a}/a —{(2,a),(3,a)}), and

(3,{a}/a — {(out,a)}) — out specifies that the sig-
nal coming from neuron 3 is the output of the system,
but it can be taken as input signal for another NAND-
system.

A B

({a}/a = {(2,a),
(3,a)})

({a*}/a — {B3,2)})
({a}/a—{}),

ANAND B

Figure 1: NAND-gate.

In each step, neuron 2 sends one spike to neuron 3.
Neuron 1 has two input axons (marked by A and B).

If a spike arrives from only one of these axons, then the
rule ({a}/a — {}) is executed, and the output neuron
3 spikes. Only if neuron 1 gets a spike from both its
input axons, then the rule ({a®}/a — {(3,a)}) will
be applied, which now inhibits neuron 3 from firing
because the inhibitory azon (indicated by a dot at the
end of the directed edge) from neuron 1 to neuron 3 is
activated.

As a specific feature of the spiking neural P system
with inhibitory axons described above, we can see that
for every neuron j in this system, either M; or Nj is
empty.

As is well known, every boolean function can be
represented by just using NAND-gates. Hence, com-
bining such systems as described above, we can easily
represent every boolean function by a corresponding
spiking neural P system with inhibitory axons. In this
case, the answer to an input arrives in 2k steps where k
is the depth of the logical network of NAND-gates rep-
resenting the given function. Moreover, in this case we
do not consider halting computations, yet instead ob-
serve the spike train (the sequence of zeroes and ones
in the output neuron) taking into account the delay of
2k.

5 Conclusion

We have introduced the model of extended spiking
neural P systems with inhibitory axons. Based on
the theoretical results already proved in [1] and [5],
we have exhibited that finite extended spiking neural
P systems with inhibitory axons characterize the reg-
ular sets; on the other hand, already very restricted
variants of extended spiking neural P systems with in-
hibitory axons allow us to obtain computational com-
pleteness, i.e., to characterize the recursively enumer-
able sets.

Spiking neural P systems with inhibitory axons can
be used to specify logical gates, but they also promise
to be interesting for specifying other models of com-
putation; for example, in the future we shall also in-
vestigate the relation between extended spiking neural
P systems with inhibitory axons and Petri nets.

Acknowledgements

The work of Marion Oswald is supported by FWF-
project T225-N04.

References

[1] A. Alhazov, R. Freund, M. Oswald, M. Slavkovik,
Extended Spiking Neural P Systems Generating
Strings and Vectors of Non-Negative Integers,
in H. J. Hoogeboom, Gh. Paun, G. Rozenberg
(Eds.), Pre-proceedings of the 7th Workshop on
Membrane Computing WMC?7, 88-101 (2006)

[2] Dassow J, Pdun Gh (1989) Regulated Rewriting
in Formal Language Theory. Springer, Berlin

[3] Martin-Vide C, Pazos J, Pdun Gh, Rodriguez-
Patén A (2002) A new class of symbolic abstract
neural nets: Tissue P systems. In: Proceedings
of COCOON 2002, Singapore, Lecture Notes in
Computer Science 2387, Springer-Verlag, Berlin,
290-299

[4] Gerstner W, Kistler W (2002) Spiking Neuron
Models. Single Neurons, Populations, Plasticity.
Cambridge Univ. Press

[5] Ionescu M, Pdun Gh, Yokomori T (2006) Spiking
neural P systems. Fundamenta Informaticae 71,
2-3:279-308

[6] Maass W (2002) Computing with spikes. Special
Issue on Foundations of Information Processing
of TELEMATIK 8, 1:32-36

[7] Maass W, Bishop C (eds) (1999) Pulsed Neural
Networks. MIT Press, Cambridge

[8] Minsky M L (1967) Computation: Finite and In-
finite Machines. Prentice Hall, Englewood Cliffs,
New Jersey

[9] Pdun Gh (2002) Computing with Membranes: An
Introduction. Springer, Berlin

[10] Pdun Gh, Pérez-Jiménez MJ, Rozenberg G (2006)
Spike trains in spiking neural P systems, Intern J
Found Computer Sci, to appear (also available at

[12])

[11] Rozenberg G, Salomaa A (eds) (1997) Hand-
book of Formal Languages (3 volumes). Springer,
Berlin

[12] The P Systems Web Page,
http://psystems.disco.unimib.it

