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Abstract
Under the mass action law of chemical reactions,

the calculations of Abstract Rewriting System on Mul-
tisets can be regarded as linear maps. Therefore, in
order to analyze the dynamical behaviors of the sys-
tem, we use the method of analyzing linear dynamical
systems. We consider the brusselator model and ana-
lyze its dynamical stability.

1 introduction

Abstract Rewriting System on Multisets (ARMS) is
a class of P Systems[6]. Since in ARMS we can model a
system intuitively, it has been applied in various fields,
such as systems biology (modeling the signaling path-
way of P53 protein in a cell[4], modeling inflammation
response, etc.); bio-chemistry and the science of com-
plexity (modeling and simulation of proto-cells which
is composed of membranes, modeling proto-enzyme
networks and their evolution, etc.).

ARMS is not only a model of computation based on
computational algebra (rewriting systems) but also a
hybrid model that connects between discrete systems
and continuous systems; under the mass action law of
chemistry, ARMS can be regarded as a discrete ex-
pression of the master equation[?][?], which describes
chemical reactions[6]. Furthermore, if we assume the
system size is large enough, we have a continuous ap-
proximation of the ARMS[6].

In this paper, we consider the ARMS under the
mass action law, where calculations of ARMS can be
regarded as sequences of linear maps and where, in
order to analyze the system, we will use methods of
linear dynamical systems[3].

2 Abstract Rewriting System on Mul-
tisets, ARMS

ARMS is a model of computation of chemical re-

actions, in which floating molecules can interact with
each other according to given reaction rules. Techni-
cally, in ARMS a chemical solution is a finite multiset
of elements denoted by symbols from a given alpha-
bet, A = {a, b, . . . , }; these elements correspond to
molecules.Reaction rules that act on the molecules are
specified in ARMS by reaction rules.

Let A be an alphabet (a finite set of abstract sym-
bols). A multiset over a set of objects A is a mapping
M : A 7→ N, where N is the set of natural numbers,
N, 0, 1, 2,. . . .The number M(a), for a ∈ A, is the mul-
tiplicity of object a in the multiset M . We denote by
A# the set of all multisets over A, including the empty
multiset, ∅, defined by ∅(a) = 0 for all a ∈ A. A mul-
tiset M : A 7→ N, for A = {a1, . . . , an} is represented
by the vector w =(M(a1) M(a2) . . . M(an)). The
union of two multisets M1,M2 : A 7→ N is addition of
vectors w1 and w2 that represent the each multisets
respectivelly. If M1(a) ≤ M2(a) for all a ∈ A, then we
say that multiset M1 is included in multiset M2 and
we write M1 ⊆ M2.

Since we consider population dynamics of molecules
and a reaction rule denotes the population change in
this paper, we define a reaction rule u → v, u, v ∈ A#

is defined as a vector r, r = −u + v (it cannot express
catalytic reaction such as A+C → B+C). In general,
a reaction rule is defined as the pair of vectors, (u, v)
(in general case see [?]).

A reaction is the addition of vectors M ∈ A# and
r ∈ R, and it can be defined only when r ⊆ M. We can
define over A# a relation: (→): for M,M ′ ∈ A#, r ∈
R we write M → M ′ iff M ′ = (M + r) ≥ 0.

m times of reactions from S0 ∈ A# corresponds
to m times of vector addition, Sm = S0 + airi +
ajrj +akrk +· · · , (ai, aj , ak, · · · ∈ {1, 2, 3, · · ·}, ai+aj +

ak + · · · = m, ri, rj , rk, · · · ∈ R) = S0 +
m∑

i=1

rj , m =

1, 2, 3, · · · , rj ∈ R.

Definition (cycle) The sequence of reactions such



that Si+m = Si +
m∑

i=1

rj , m ≥ 2 is called cycle and m

is the period.

Definition (Rule Matrix) The rule matrix A is com-
posed of the transpose of all rule vectors. For example,
the rule matrix of the rule vectors of {(-1 1),(1 -1)} is

A =
(
−1 1
1 −1

)
.

3 Theoretical Remark on ARMS

Remark
If the rules of R of an ARMS are linearly independent,
there are no cycles in any sequence of reactions.

proof: If the rules of an ARMS r1, r2, · · · , rn are lin-
early independent, there does not exist any sequence

of reactions such that Si+m = Si +
m∑

i=1

rj ,m ≥ 2. If

such a sequence existed, it would requires airi +ajrj +
akrk + · · · = 0, but since we assumed that the rule vec-
tors are linearly independent, it is satisfied only when
ai = aj = ak = · · · = 0.

This remark also claims that if sub sets of rule vec-
tors are not linearly independent, there can exist cycles
in the sequence of reaction. 1

It is noted that even if a set of reaction rules are
linearly independent, there can exist cycles in its sub-
space. The rule vector a

b
c

 ≡

−3
−1
1

 ,

 5
1
−1

 , (1)

are linearly independent, but since the subspace of b
and c is not linearly independent, there can exist cyclic
reaction sequences in the b − c space so that the tra-
jectory of reaction sequences will spiral in the a−b−c
space.

4 Analysis of the dynamics of Brusse-
lator

The brusselator model is a mathematical model of
an autocatalytic, oscillating chemical reaction, known

1 rank(R) illustrates the ARMS may have cycles or not in its
sequences of reactions

as the Belousov Zhabotinsky reaction (BZ reaction)[2].
The brusselator model is given by:

A k1→ X r1

B + X k2→ Y + D r2

2X + Y k3→ 3X r3

X k4→ E r4

Figure 1: Brusselator

where A and B are input and are continuously sup-
plied to or richly exist in the system. Since we are
interested in the behavior of the number of X and Y,
we will use the two-dimensional rule vector x=(x y)
where:

r1 = (1, 0), r2 = (−1, 1), r3 = (1,−1), r4 = (−1, 0),
(2)

respectively. Although there are some of simulation
based works on this model by using various models,
basically they follow:(

xn+1

yn+1

)
=

(
1
0

)
+

ax2
nyn

C

(
1
−1

)
+

bxn

C

(
−1
1

)
+

xn

C

(
−1
0

)
.

where C is a constant for normalization and defined
by axxyn + bxn + xn = C. For simplicity, we assume
that k1 and k4 are equal to 1, k2 = b and k3 = b.
The moleculaes A and B are assumed to be in large
excess so that their concentrations do not change with
time. Furthermore, in analyzing dynamics we ignore
the constant C (we can ignore it without loss of gen-
erality).

Equilibria

Since (1 0) + (1 1) + (-1 1) + (-1 0) = (0 0) when
ax2y = bx = x = 1, obviously these rule vectors are
not linearly independent and there can exist cyclic re-
action sequences. It is apparent that ax2y = bx = x =
1 is satisfied only when (x, y) = (1, b

a ), so this is the
only equilibrium of the system.

Stability

Since X,Y ∈ A#, by calculating partial difference
we obtain the Jacobian of the system:

Jf(x, y) =
(
−bϵ − ϵ + 2axyϵ + ayϵ2 ax2y

bϵ − 2axϵ − ayϵ2 −ax2ϵ

)
, (3)



where ϵ is given as;

ϵ =
([X] + [Y ]) + δ

[X] + [Y ]
, (0 < δ < [X] + [Y ]) (4)

where δ denotes the change of concentration of x ∈ X
or y ∈ Y . While δ is fixed, if [X] + [Y ] (system size)
is getting larger (macroscopic), δ is getting smaller in
relation to the system size, on the other hand, if [X]+
[Y ] is getting smaller (mesoscopic), the δ is relatively
getting larger (ϵ > 1). It is noted that ϵ ∈ the set of
quotient, Q.

Evaluated at (x, y) = (1, b
a ),

Jf(1,
b

a
) =

(
−bϵ + bϵ2 aϵ
−bϵ − bϵ2 −aϵ

)
. (5)

Thus the trace, τ and determinant, det are

τ = Trace
(
Jf(1,

b

a
)
)

= (b − a − 1 + bϵ)ϵ, (6)

det = Det
(
Df(a,

b

a
)
)

= aϵ2, (7)

Since a > 0, ϵ > 0, this implies that (1, b
a ) is not a

saddle point. If b < 1
ϵ+1 (a + 1), then τ < 0 and the

equilibrium is an attractor, while if b > 1
ϵ+1 (a+1), it is

a repellor. This shows that when a system is macro-
scopic, its stability is close to the model of differen-
tional equations, while when the system is mesoscopic,

1
ϵ+1 (a + 1), ϵ >> is getting smaller and the unstable
region is expanding. Thus, the behavior of a system
on a mesoscopic scale is likely to be destabilized by
fluctuations.

5 Conclusion

On the simulation of the brusselator model, es-
pecially, on a mesoscopic scale, Vladimir[7], using
the Monte-Carlo simulation on two-dimensional lat-
tice, reported that decreasing the system size down to
mesoscopic may result in the periodic kinetic oscilla-
tions becoming aperiodic and disappearing. We have
also found this behavior throughout simulations by us-
ing ARMS [5]. We believe that it is the descritization
that makes the system unstable. However, its physical
significance is still open to discussion.

Since under the mass action law ARMS can be re-
garded as a linear map, we attempted to use methods
of analyzing linear dynamical systems in our investiga-
tion of the stability of the system. It is a challenge to
apply this method to P Systems or the reaction map
systems[1] will be the subject of our future study.
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