
An Architecture for Attacking the Bottleneck Communication in P Systems

J. A. Tejedor L. Fernández
Natural Computing Group Natural Computing Group

Universidad Politécnica de Madrid Universidad Politécnica de Madrid
Madrid, Spain Madrid, Spain

F. Arroyo G. Bravo
Natural Computing Group Natural Computing Group

Universidad Politécnica de Madrid Universidad Politécnica de Madrid
Madrid, Spain Madrid, Spain

Abstract

The distributed implementation of P system on
a cluster of processors has met with the bottleneck
communications problem. When the number of
membranes grows in the system, the network gets
congested and the times to execute an evolution step
degrades.

In this paper, we suggest a sotfware architec-
ture denominated “partially parallel evolution with
partially parallel” communication where some mem-
branes are located in each processor, proxys are
used to communicate with membranes located in
different processors and a policy of access control to
the network communications is mandatory. With all
this, we get a certain parallelism in the system and
an acceptable functioning in the communications. In
addition to this, it establishes a series of equations
that allows us to determine in the architecture the
optimum number of processors needed, the required
time to execute an evolution step, the number of
membranes to be located in each processor and the
conditions to determine when it is best to use the
distributed solution or the sequential one.

keywords: architecture, bottleneck, communica-
tion, P systems

1 Introduction

The transition P systems were presented by Ghe-
orghe Păun in 1998 [1] who based his work on basic
features of biological membranes. A membrane defines
a region where a series of chemical elements (multisets)

may experience a series of chemical reactions (evolu-
tion rules) and produce other elements. Inside the
region limited by a membrane may be, at the same
time, other membranes creating a complex hierarchi-
cal structure that may be represented by a tree. The
products generated by the chemical reactions may stay
in the same region or travel to the container region or
to the regions contained by a membrane. As a re-
sult of such reaction, a membrane may dissolve itself
(its chemical elements transfer to the container mem-
brane) or inhibit itself (the membrane becomes imper-
meable and does not allow any object to pass).

The membranes systems are dynamic as the chemi-
cal reactions produce elements that cross the frontiers
of the membranes to travel to other regions in order
to produce new reactions. This dynamic behaviour
can be sequenced in a series of evolution steps be-
tween one and another configuration system that will
be determined by the membrane structure and mul-
tisets present inside membranes. In the transition P
systems formal model two phases are distinguished in
each evolution step: rules application and communica-
tion. In the rules application phase inside each mem-
brane its rules are applied to the multisets in parallel.
Once the previously described phase has concluded,
the communication phase begins and the generated
multisets travel towards the target membranes. These
systems perform a computation through transition be-
tween two consecutives configurations, transforming
into computational device with the same capacities
that Turing machines.

The power of this computation model lies in the
fact that the process is massively parallel in the rules
application phase as well as in the objects commu-
nication phase. The challenge for the researchers is



to get hardware or software implementations of P
systems with a high parallelism degree.

A natural and intuitive implementation of P sys-
tems in electronic devices is carried out based on the
following:

1. To locate in each processor a membrane where
the evolution rules are applied parallelly on their
multiset.

2. To carry out the communication between 2 mem-
branes (2 processors) using 4 interfaces and 2
communications buses. The data travel in each
direction (father-son or son-father) using a com-
munication interface in the outgoing processor
and another one in the incoming processor that
are connected by a data bus.

The main problem of this implementation model is
that it is unfeasible. Nowadays technologies do not
allow for a processor to have as many communication
interfaces as membranes are connected to it.

The aim of this work is to establish a communica-
tions architecture that will adapt to the special fea-
tures of P systems. For this, it is structured in the
following way: in the first place, the related works
are enumerated analyzing the proposed architectures,
next a communication architecture model is intro-
duced stating its economical and computational cost
as well as its viability, to continue with a more detailed
analysis of the model, to end describing the conclu-
sions obtained.

2 Related Works

The implementation of P system in digital hard-
ware device is being carried out from the point of
view of Hardware as well as Software. Most of the
solutions have been focused, mainly, in the first phase
of the P system evolution describing digital circuits
or software architectures/designs that have allowed
the application of the defined evolution rules inside
the membranes. The phase of multisets membranes
communication has not been contemplated or it
has simply been performed by shared memory,
except Syropoulos [2] and Ciobanu [3] that in their
distributed implementations of P systems use Java
Remote Method Invocation (RMI) and the Message
Passing Interface (MPI) respectively, on a cluster of
PC connected by Ethernet. These last authors do not

carry out a detailed analysis of the importance of the
time used during communication phase in the total
time of P system evolution, although Ciobanu affirms
that “the response time of the program has been
acceptable. There are however executions that could
take a rather long time due to unexpected network
congestion” [3].

A model of impementacion of P system simplifying
and generalizing the ideas of the works of Syropoulos
and Ciobanu would be the following one:

1. In each processor a membrane is located where its
rules will be applied. A processor can be a dig-
ital circuit implemented by Field-Programmable
Gate Arrays (FPGAs), a microcontroller or a mi-
croprocessor.

2. All processors are connected to a common bus
through a communication interface governed by a
protocol.

In this model, all the membranes apply its rules in
parallel for later communicating among them. Due
to the fact that the communication line is common
to all of them, at a particular time there will only be
a membrane or processor communicating. Then, the
communication becomes sequentially. The problem is
more complex as Ciobanu advices [3], because if no
special measures are taken, there may be more than
one processor trying to communicate at a particular
time and collisions will produce that will delay the
whole communication process.

Assuming that no collisions happen in the network
and taking into consideration that the information
transfer between 2 membranes is made in both di-
rections (father-son/son-father), the total number of
communications made up during a transition step is
2(M − 1). Therefore, the total time to perform the
evolution step is:

T = Tapl + 2(M − 1)Tcom (1)

where M is the number of membranes of the
P system, Tapl is the maximum time used by the
slowest membrane in applying its rules in the whole
system and Tcom is the maximum value of all times
of communication between 2 nodes. Meaning that
the time T is linear dependent on the number of
membranes that the P system has.

The system throughput (processors and communi-
cations) can be expressed in accordance with the fol-
lowing:



Thevo =
Tapl

Tapl + 2(M − 1)Tcom
(2)

Thcom =
2(M − 1)Tcom

Tapl + 2(M − 1)Tcom
(3)

So if the number of membranes grows, the pro-
cessors throughput will approach zero, while the
communications will practically be working 100% of
the time.

Considering the system costs, this model is expen-
sive because it needs as many processors and commu-
nication interfaces as membranes in the system:

C = MCpro + MCcom (4)

The analysis of this model makes us reach the fol-
lowing conclusions:

• The time used in a step of P system evolution
is huge and it grows lineally with the number of
membranes.

• The system cost is very high with the processors
throughput practically nil.

• Considering that Tapl is normaly smaller than
Tcom, it complies with:

MTapl < Tapl + 2(M − 1)Tcom (5)

The time used in a step of P system evolution is
worse than the one obtained using a single pro-
cessor. Consequently, it is useless to choose this
software architecture for the P systems implemen-
tation.

Therefore, it is necessary to carry out a study of the
communications problem in a processors distributed
architecture in order to determine the viability imple-
mentation of a P system.

3 Partially parallel evolution with par-
tially parallel communication Model

The communication model that is being introduced
in this section allows a certain parallelism degree in
the rules application phase, as well as in a P system
communication phase. In this way, the system cost
decreases and the acceptable time used in a P system
evolution step is obtained. In short, this new model
is denominated “partially parallel evolution with par-
tially parallel communication” and it is based on the
following:

1. Membranes Distribution: In each processor,
K membranes are located that will evolve, at
worst, sequentially. The value of K is determined
by the relation between the number of membranes
M and processors P , where K ≥ 1.

The benefit obtained is that the number of the
external communications decreases. The total
number of communications splits in two classes:
a group of internal communications for pairs of
membranes located in the same processor and an-
other group of external communications to inter-
change information among pairs of membranes lo-
cated in different processors. Therefore, the num-
ber of external communications against the previ-
ous model will always be smaller. Moreover, this
is an important fact because the run time to carry
out the internal comunications will be negligible.

For example, the 22 external communications
performed by an architecture with a membrane
located in each processor (Figure 1) have been
reduced to 10 in the architecture that has located
3 membranes in 4 processors (Figure 2).

Figure 1: P system communications

2. Proxy for processor: When a membrane wants
to communicate with another one located at a dif-
ferent processor, the first one uses a proxy (pro-
grams or device located in the processor that car-
ries out an action in representation of another),
instead of doing it directly. Therefore, the com-
munications that use the common line (external
communications to the processor) are carried out
between proxys, not between membranes. This
intermediate element located between the bus and
the membranes concentrates the information in
two stages:



Figure 2: Communications with membranes distribu-
tion

(a) N multisets of N membranes located in a
processor that has a common father mem-
brane in another processor, becoming inte-
grated in a single multiset that is the one
that will be sent.

(b) The S communication packet of L length
necessary to communicate between S pairs
of membranes located in 2 different proces-
sors are reduced to one single packet of S.L
length.

The benefit of using proxys in the communication
among membranes against direct communication
is double:

(a) Due to the first stage previously described,
the amount of information sent is smaller.
This is produced by the fact that the N
packet necessary to communicate N mem-
branes with the same father, are transformed
into a single packet of the length of a single
multiset.

(b) Due to the second stage, the number of ex-
ternal communications is smaller although
packets are bigger. But, considering that
the communication protocols penalize the
transmission of small packets because to the
data encapsulated processes and to the time
safety intervals between future transmission,
it is better to send one packet of length equal
S.L than S packets of length equal L.

Figure 3 shows that if proxys are introduced in
the processors, then the number of external com-
munications are reduced to 8.

3. Tree topology of processors: In graph the-
ory it is established that P − 1 connections is the
minimum number required to interconnect a con-
nected graph of P processors. This restriction
imposes on the graph a tree topology. The ben-

Figure 3: Communications with a proxy for processor

efit obtained with the tree topology of processor
is that it minimizes the total number of external
communications made as the proxys interchange
information only with its direct predecessor and
its direct successors, and therefore the total num-
ber of external communications in each evolution
step is 2(P − 1).

Figure 4 shows that external communications are
reduced to 6 when a tree topology of procesors is
used to connect them.

Figure 4: Communications using a tree topology



4. Token passing in the communication: No
proxy can start a communication until it is in-
vited to do it by means of token passing. This to-
ken travels through a depth first serarch sequence
in the topology of processors tree. In this way,
when a X proxy receives a communication from
its father proxy acquires the token and then sends
information to its first child proxy (C1) passing
the token and keeps waiting. When C1 sends in-
formation in answer to X, the later acquires the
token again and sends information to its second
son proxy (C2) passing the token and keeps wait-
ing, and so on until all father-childrens commu-
nications have been carried out. Finally, X proxy
sends its answer to its father returning the token.
The whole process starts with the root proxy of
processors hierarchy.

This communication policy prevents that more
than one proxy are trying to transmit informa-
tion at the same time. Therefore, there are no
collisions and no congestion in the line. Figure
5 shows the communication sequence of the four
processors proposed in the sample.

Figure 5: Communication sequence

4 Detailed analysis of the partially par-
allel evolution with partially parallel
communication model

In this software architecture K membranes have
been located in each processor. At the worst, the ap-
plication of the rules in each one of these membranes
will be made sequentially in each processor. There-
fore, the run time to carry out the application of the
rules of M membranes will be:

KTapl

Due to the establishment of tree topology of proces-
sors, the number of external communications in each
evolution step of the P system will be:

2(P − 1)

Therefore, the required time to perform a complete
evolution step will be:

T = KTapl + 2(P − 1)Tcom pro (6)

Being Tcom pro the maximum time required to com-
municate 2 proxys using the common bus. Tcom pro

value will depend on the topology of P system and also
the distribution that has been made of M membranes
in P processors. In the most favourable case, when a
unique membrane located in a processor has to com-
municate with a unique membrane located in another
processor, Tcom pro is similar to Tcom. The worst case
takes place when K membranes located in a processor
send information to other K membranes located in a
different processor. However, keeping in mind that the
protocol penalizes the short packets (there is not much
difference sending 10 or 10000bytes through TCP/IP
according to the experimental data obtained), that the
encapsulation processes take its time and that the in-
formation can be compressed before sending it, we can
assume that Tcom pro is similar to the product of a con-
stant by Tcom, being this constant much smaller that
K when K is big. Therefore,

Tcom pro = cTcom where c >= 1 << K (7)

Once it is known the required time to perform an
evolution step, we can determine the number of mem-
branes that should be located in each processor in or-
der to minimize the time:

Kopt =

⌈√
2cMTcom

Tapl

⌉
where 1 <= Kopt <= M (8)

This Kopt value allows to calculate the number of
processors necessary to run the P system minimizing
the necessary time to carry out an evolution step.

Popt =

⌈√
M.Tapl

2cTcom

⌉
where 1 <= Popt <= M (9)

From the values Kopt and Popt the minimum time
required to perform an evolution step is:

Tmin = 2
√

2cMTaplTcom − 2cTcom (10)



Therefore, the system evolution time is obtained by
adding twice the square root of the result of multiply-
ing the number of membranes M by Tapl and by Tcom.

The processors and the communications through-
put is calculated as follows:

Thpro =

√
2cMTaplTcom

2
√

2cMTaplTcom − 2cTcom

(11)

Thcom =

√
2cMTaplTcom − 2cTcom

2
√

2cMTaplTcom − 2cTcom

(12)

If we disregard the 2cTcom term, the value got in
both cases is 0.5, therefore, a more balanced system
has been obtained (50% working the processors, 50%
working the communications) than the one obtained
with the other software architectures.

With regards to the cost of this architecture, we
can assure that it is moderate against the other archi-
tectures proposed, as P processors are needed with P
communication interfaces and the value of P is around
the square root of the number of membranes M .

C = PCpro + PCcom (13)

About the main factors that influence in the time
used in a step of P system evolution in this software ar-
chitecture (Tapl and Tcom) we really can influence only
on the first one in order to improve this time. The soft-
ware engineers can make that the K membranes of a
processor apply faster the evolution rules, thus devel-
oping faster sequential or parallel algorithms. Never-
theless, it is difficult to get faster communicate among
processors as it is necessary to invest many resources
that are only within reach of the telecommunications
industry. If it is possible to make that Tapl be N faster
times the values of Kopt, Topt and Tmin will be:

Kopt =

⌈√
2cMNTcom

Tapl

⌉
where 1 <= K <= M (14)

Popt =

⌈√
M.Tapl

2cNTcom

⌉
where 1 <= P <= M (15)

Tmin = 2

√
2cMTaplTcom

N
− 2cTcom (16)

Therefore, the number of membranes that would
be runned in a processor would be multiplied by

√
N ,

the number of required processors would be divided
by the same factor and the time required to perform

an evolution step would improve approximately with
the same factor

√
N .

Finally it is important to know, when a distributed
architecture is better than a momoprocessor architec-
ture to perform a computation. Therefore we will have
to determine under which conditions the following is
fullfilled:

2
√

2cMTaplTcom − 2cTcom < MTapl (17)

Then, the several processors solution is better
when:

M >
2cTcom

Tapl
(18)

5 Conclusions

In this paper a communications architecture to im-
plement P system has been introduced. This architec-
ture is based on the location of several membranes
in the same processors, the use of proxys for com-
municating processors placed in a tree topology and
token passing in the communication. This solution
avoids communication collisions, reduces the number
and length of the external communications. All this,
allows to obtain a better step evolution time than
in other suggested architectures congested quickly by
the network collisions when the number of membranes
grows. Also, our architecture is highly scaleable with
moderate costs.

References

[1] Gh. Păun (2000), “Computing with membranes”,
Journal of Computer and System Sciences, 61, 1,
108-143

[2] A. Syropoulos, E.G. Mamatas, P.C. Allilomes et al
(2003), “A distributed simulation of P systems”,
A. Alhazov, C. Martin-Vide and Gh. Păun (Edi-
tors): Preproceedings of the Workshop on Mem-
brane Computing; Tarragona, July 17-22, 455-460

[3] G.Ciobanu, W.Guo (2004), “P Systems Running
on a Cluster of Computers”. Workshop on Mem-
brane Computing (Gh. Păun, G. Rozenberg, A.
Salomaa Eds.), LNCS 2933, Springer, 123-139.


