
Parallel Software Architectures Analysis for Implementing P Systems

Luis Fernández Fernando Arroyo
Natural Computing Group Natural Computing Group

Universidad Politécnica de Madrid Universidad Politécnica de Madrid
Madrid (Spain), Campus Sur. 28031 Madrid (Spain), Campus Sur. 28031

Iván Garćıa Abraham Rodriguez
Natural Computing Group Natural Computing Group

Universidad Politécnica de Madrid Universidad Politécnica de Madrid
Madrid (Spain), Campus Sur. 28031 Madrid (Spain), Campus Sur. 28031

Abstract

This paper presents software processes architec-
tures for implementing P systems on parallel hard-
ware architectures. In order to analysis three different
software architectures present in literature, two para-
meters are established: parallelisms degree and com-
putational overload. This parameters will allow us to
compare the three different studied software architec-
tures. Finally, this analysis determines the candidate
software architecture depending on available hardware
architecture and the P system structure.

1 Introduction

P systems are a new computational model based
on the membrane structure of living cells [1]. This
model has become, during last years, a powerful
framework for developing new ideas in theoretical
computation. P systems with simple ingredients
are Turing complete. In particular, P systems are
a class of distributed, massively parallel and non-
deterministic systems. ”As there do not exist, up to
now, implementations in laboratories (neither in vitro
or in vivo nor in any electronic medium), it seems
natural to look for software tools that can be used as
assistants that are able to simulate computations of
P systems” [2].

There are many simulators, but ”the next gen-
eration of simulators may be oriented to solve (at
least partially) the problems of storage of information
and massive parallelism by using parallel language
programming or by using multiprocessor computers”
[2]. ”Several authors have implemented the first ver-

sions of simulators based on parallel and distributed
architectures, which is close to the membrane com-
puting paradigm” [2]. From them, we emphasize the
following ones: Ciobanu presents an implementation
based on a computer cluster that ”consists of 64 dual
processor nodes. [...] The rules are implemented as
threads” [3], this implies that a one to one relationship
is established between processes and evolution rules,
we refer his parallel software architecture as evolution
rules oriented ; Syropoulos presents a simulation
that ”is characterized as distributed in the sense
that a number of objects -modeling membranes-
execute code on different machines” [4], we will refer
this as parallel software architecture as membrane
oriented ; finally, Tejedor presents in [5] a new parallel
software architecture in which only exists one process
per processor establishing a one to one relationship
between processes and processors, we refer to it as
processor oriented.

The aim of this work is to determine the appro-
priate parallel software architecture for a given P
system and a hardware architecture. So, it pretends
to determine the set of process and their relation-
ships (parallel software architecture, PSA) that are
appropriate to be executed over a set of connected
processors (hardware architecture). In order to do it,
it is necessary to establish the evaluation parameters
for the analysis of parallel software architectures
independently of software and hardware technologies.

This paper is structured as following: first, they are
established the evaluation parameters for the analy-
sis of a given parallel software architecture; the three
following points evaluate the different parallel soft-



ware architectures in bibliography; next, it is pre-
sented a comparative of the three previous architec-
tures through the established evolution parameters;
finally, we present our conclusions.

2 Evaluation Parameters

Evaluation of parallel software architecture must
be independent of particular hardware technology in
which it is implemented on. This abstraction process
is only dependent on the number of processors avail-
able on the hardware architecture; we will refer to this
number as attribute P from now on. As first parame-
ter for evaluating a parallel software architecture, we
define the parallelism degree, PDPSA as follows:

PDPSA =
P

R
· 100 (1)

where R is the number of evolution rules. The
range of values for PDPSA belongs to (0− 100].

On the other hand, each process will be executed
sequentially on its own processor. But, in case of
there is less processors than processes, multiprogram-
ming technique gets concurrency of several processes
assigned to a same processor but it does not get real
parallelism. However ”while the general motivation
for demand-driven concurrency is laudable, the imple-
mentations [...] may not produce optimal results. To
understand why, we must consider the subtleties of
process creation and scheduling” [6]. Consequently,
in multiprogramming cases, it is required a compu-
tational overload of the operating system to manage
processes. Process management costs, ∆PM (N,P ), is
increased when the number of processes, N , increase
keeping the same number of processors, P . Hence,

∆PM (Na, P ) < ∆PM (Nb, P ) ⇔ Na < Nb (2)

Moreover, concurrent and/or parallel processes in-
terrelate between each other by two types of behav-
iour: cooperating and/or competing. These relation-
ships require synchronization and communication in-
teractions between processes. At the end, these inter-
actions become conditional and barrier synchroniza-
tions and mutual exclusions when there are shared
resources. These interactions fall into a new compu-
tational overload. In particular, costs of conditional
synchronization, ∆CS(N), and barrier synchroniza-
tion, ∆BS(N), are linear dependent on the number
of processes while costs of mutual exclusion ∆ME(N)

do not depend on the number of processes. Therefore,
we get following equations:

∆CS(Na) = k.∆CS(Nb) where Na = k.Nb (3)
∆BS(Na) = k.∆BS(Nb) where Na = k.Nb (4)

Then, our second evaluation parameter for the
parallel software architecture is defined as computa-
tional overload, ∆PSA(N,P ), being N the number of
processes and P the number of processors, this para-
meter is expressed by.

∆PSA(N,P ) = ∆PM (N,P ) + ∆CS(N) + (5)
∆ME(N) + ∆BS(N)

Let C be the sequential execution cost of a P system
on a monoprocessor hardware architecture. Then it
could be define the performance of a parallel software
architecture with N processes on a hardware architec-
ture with P processors by the following equation:

C + ∆PSA(N,P )
P

(6)

Next three sections are devoted to the analysis of
evaluation parameters over the three parallel software
architectures mentioned above.

3 PSA Evolution Rules Oriented

First architecture establish one process per evolu-
tion rule of the P system. Therefore, the number of
processes is R and each one of them is responsible
for applying one evolution rule over the multiset of
its membrane. So, parallelism is given when each
one of the R processes progresses over the membrane
multiset.

This parallel software architecture reaches a par-
allelism degree equal to 100% when P = R. But
when P < R, it does not exists a total parallelism be-
cause, necessary, it is made use of multiprogramming
techniques. Thereby, its parallelism degree decays to
P/R×100 %. Moreover, computational costs of the P
system evolution is overloaded by multiprogramming
of R processes over the P processors, that we will
refer as ∆PM (R,P ). If P << R, this overload
degrades the system because of ∆PM (R,P ) → ∞ as
these architectures ”do not bound concurrency are a
risk in an environment that presents a heavy load.
Concurrency can increase until operating system



becomes swamped with processes” [6].

On the other hand, algorithms for evolution rules
application over a membrane multiset gathered in lit-
erature [2] always answer to the same scheme: ”Since
many rules are executing concurrently and they are
sharing resources, a mutual exclusion algorithm is
necessary to ensure integrity” [3]. So, ”when more
than one rule can be applied in the same conditions,
the simulator randomly picks one among the candi-
dates” [2]. Therefore, processes include pre-protocols
and post-protocols for critical sections of their code
that necessary must work under mutual exclusion.
We will refer to this overloaded computational cost as
∆ME(R).

At this point, it has to be highlighted one aspect
of synchronization between processes that is determi-
nant for the parallelism degree of this architecture:
granularity of critical sections referred above. Thus,
we have coarse-grained critical sections when ma-
jority of the process of evolution rule application
over its multiset is located in a critical section and
fined-grained critical sections otherwise.

For the case of coarse-grained critical sections,
concurrent execution of subsets of processes of rules of
a same membrane offers a sequential behavior. There-
fore, repercussion of coarse-grain critical sections in
processes implicates in a direct way that parallelism
degree is reduced to a M/R× 100 %, where M is the
number of membranes.

Last, we would like to highlight the following syn-
chronization between processes and the communica-
tion phases in the P system evolution:

• A barrier synchronization that ensures that every
process ends its corresponding evolution rule ap-
plication before that it begins the communication
of current evolution transfer.

• A conditional synchronization that ensures that
every process waits to apply its evolution rule un-
til it ends the communication phase of the previ-
ous evolution step ends.

So, it has to be considered a new computational
overload that ensures these synchronizations for the
R processes, that we will refer ∆CS(R) and ∆BS(R)
respectively.

Figure 1 summarizes the parallelism degrees pre-
sented in this point for parallel software architecture

evolution rule oriented. Thus, it brings in as deter-
minant parameters: number of processors and criti-
cal section of process granularity. Moreover, on every
case, it is attached the computational added costs to
the evolution of the P system.

4 PSA Membranes Oriented

In this architecture it is established one process per
membrane of the P system. Therefore, the number
of processes is M and each one of these processes is
responsible for applying sequentially every evolution
rule of a membrane over the multiset of its region.
So, parallelism is reached when each one of the
M processes progresses over the multiset and the
evolution rules of its membrane.

This architecture is bounded by a degree of
parallelism equal to M/R × 100 % when P = M .
But, when P < M , it is necessary to use multi-
programation techniques , in a similar way to the
architecture presented above. In similar manner, its
parallelism degree decay to P/R × 100 %. More-
over, computational costs of the P system evolution
are overloaded with the multiprogramming of M
processes over the P processors, that we will refer
as ∆PM (M,P ). In the case of de P << M , this
overload degrade the system due to ∆PM (M,P ) →∞.

On the other hand, sequential algorithms for the
application of evolution rules does not use concurrent
access to shared information because only one process
applies every evolution rule over the multiset sequen-
tially.

Finally, synchronizations between processes and
communication phases in the evolution of the P sys-
tem are the same than in the previous architecture:
barrier synchronization respect to the communica-
tion of the current evolution step and conditional
synchronization respect to the communication of
previous evolution step. So, it is also necessary to
consider the computational overload that ensures
these synchronizations for the M processes, that we
will refer as ∆CS(M) and ∆BS(M) respectively.

Figure 1 summarizes the parallelism degrees pre-
sented in this point of membrane oriented parallel soft-
ware architecture. So, it brings in just one parameter:
the number of processors. Moreover, on every case,
it is attached the computational added costs to the
evolution of the P system.



Figure 1: Parallel Software Architecture Analysis

5 PSA Processors Oriented

Last proposed architecture establishes a process
per available processor in hardware architecture.
Therefore, every one of these processors is responsible
for applying sequentially every evolution rule over the
multisets of a subset of membranes. These subsets
of membranes assigned to processes define a wrapper
over the set of membranes. Hence, parallelism is
reached when each one of the P processors progresses
over the multisets and the evolution rules of the
membranes of each subset.

This architecture is bounded by a parallelism
degree equal to P/R × 100 %. On the other hand,
it has to be highlighted that it does not exist
computational overload for processes multiprogram-
ming, because it exists a one to one ratio a priori
established. ”In fact, because a single-process im-
plementation requires less switching between process
contexts, it may be able to handle a slightly higher
load than an implementation that uses multiple
processes” [6]. In an analogous manner to the
previous architecture, given the sequential character
of the processes of evolution rules application, neither
exist computational overload for the mutual exclusion.

Last, synchronizations between processes and
communication phases are the same as previous
architectures. So, it is also necessary to consider the
computational overload that ensures these synchro-
nizations for the P processes, that we will refer as
∆CS(P ) and ∆BS(P ) respectively.

Figure 1 summarizes the parallelisms degree pre-
sented in this point of processors oriented parallel soft-
ware architecture. Moreover, on every case, it is at-
tached the computational added costs to the evolution
of the P system.

6 PSA Comparative

In this point, we show a comparative of the three
parallel software architectures presented above. In or-
der to this, it is presented a detailed study of parallel
software architectures behavior respect to the differ-
ent states that a P system evolution can be found. So,
considering the relation of P with M and R as the
determinant condition, following cases are contrasted:
a) R ≤ P ; b) M ≤ P < R; c) P < M . Subsequently,
obtained general conclusions are presented:

A. R ≤ P . On evolution rules oriented architecture
it is obtained the same computational overload
in (A) and (D) of figure 1, but with a lesser
parallelism degree with coarse-grained critical
sections. This fact, lead us to avoid evolution
rules oriented architecture with coarse-grained
critical sections.

On the other hand, in membranes oriented and
processors oriented architectures, it is obtained
the same parallelism degree and computational
overload in (G) and (H) of figure 1. This is due
to, being R ≤ P and M < R, processors oriented



architecture makes responsible for a subset of an
only one membrane to each process. Which is
an analogous situation to the membrane oriented
architecture.

From (3), (4) and (6) equations and (A) and (G)
equations of figure 1, it is obtained the necessary
condition (7) for assuring that processors oriented
architecture with fined-grained critical section has
better performance than membranes and proces-
sors oriented architectures.

C >
M

R−M
·∆ME(R) (7)

In case (7) is not fulfilled, membranes and proces-
sors oriented architectures will give a better per-
formance despite of their lesser parallelism degree.

B. M ≤ P < R. In this second case, we find same
situations than the point above: the convenience
of fined-grained critical sections over coarse-
gross granularity in evolution rules oriented
architecture. Equivalent results for membranes
and processors oriented architectures have been
obtained.

From (3), (4) and (6) equations and equations
(B) and (G) from figure 1, it is obtained the new
necessary condition (8) for assuring that proces-
sors oriented architecture with fined-grained crit-
ical sections has better performance than mem-
branes and processors oriented architectures.

C >
M

P −M
· (∆PM (R,P ) + ∆ME(R)) + (8)

R− P

P −M
· (∆CS(M) + ∆BS(M))

It occurs the same that in previous case, if (8) is
not fulfilled, parallel software architectures mem-
branes and processors oriented will give a better
performance despite of their lesser parallelism de-
gree.

C. P < M . In this third case, it can be no-
ticed that every parallel software architecture
offers the same parallelism degree. But,
considering that P < M < R and so it is
∆CS(P ) < ∆CS(M) < ∆CS(R) and that
∆BS(P ) < ∆BS(M) < ∆BS(R), lesser computa-
tional overload is always obtained with processors

oriented architecture.

Moreover, in the most restrictive case in which
P << M < R, computational overload of
∆PM (M,P ) and ∆PM (R,P ) degrade the system.

Detailed study permits us to conclude that:

• The parallel software architecture membranes ori-
ented always has a worse behavior than processors
oriented. In particular, it is observed that mem-
brane oriented is a particular case of processors
oriented architecture where the membranes sub-
set assigned to each processor is always equal to
one membrane. Therefore, flexibility of proces-
sors oriented architecture allows suiting to differ-
ent conditions always balancing or improving to
the other more restrictive architecture.

• In cases in which evolution rules oriented architec-
ture is suitable, it always need parallel algorithms
of rules application with fined-grained critical sec-
tions. Otherwise, it never raises as a parallel soft-
ware architecture candidate.

• Most appropriate parallel software architecture
for a given hardware architecture, it is not always
the one with a better parallelism degree. For cases
where P > M , it has to be fulfilled (7) or (8) con-
ditions.

• Moreover, for these cases, for a given hardware
architecture there will not be only one suitable
parallel software architecture. It also depends on
the number of evolution rules and membranes of
the P system. Therefore, combination of a hard-
ware architecture and a particular P system will
determine the parallel software architecture suit-
able for its implementation.

It is important to remarks the goodness of paral-
lelism opposite to totally sequential implementation.
”In particular, one must consider the cost of concur-
rency as well as its benefits” [6]. So, in order to guar-
antee that parallelism offers better results, it must be
ensured that computational overload costs is taken by
a bigger number of processors and that it reduces the
evolution time of the P system with respect to be taken
by just one processor. Therefore, it must be fulfilled:

C + ∆PSA(n, P )
P

< C (9)

In particular, the processors oriented parallel soft-
ware architecture must fulfill:



C >
∆CS(P ) + ∆BS(P )

P − 1
(10)

While, the evolution rules oriented parallel software
architecture must fulfill:

C >
∆CS(R) + ∆ME(R) + ∆BS(R) + ∆PM (R,P )

R− 1
(11)

7 Conclusions

In this work, we present mechanisms for evaluating
parallel software architectures for the evolution of a
P system over a given hardware architecture. We
propose the parallelism degree and the computational
overload for processes management and synchroniza-
tion as evaluation parameters.

With these parameters and the appropriate set of
equations based on them, we have analyzed evolution
rules, membranes and processors parallel software ar-
chitectures. Each one of these architectures proposes
different number of processes depending and the P
system. But, obtained results in this study shows
that the best performance is not parallel software
architecture independent, neither always offered by
the higher parallelism degree.

In particular, we show that membranes oriented
architecture never improves the other two studied
parallel software architectures. Moreover, evolution
rules oriented architecture requires the design of
processes with fined-grained critical sections to offer
better results than processors oriented one. Finally,
we present here a set of equations establishing the
conditions for determining the appropriate parallel
software architecture, and the conditions for the
parallelism to overcome a totally sequential imple-
mentation.

Analysis of these equations permits to conclude that
the candidate parallel software architecture is depen-
dent on the number of processors of the hardware ar-
chitecture and on the P system structure.

References

[1] Gh. Păun, ”Computing with Membranes”, Journal
of Computer and System Sciences, 61(2000).

[2] G. Ciobanu, M. Pérez-Jiménez, Gh. Păun, ”Appli-
cations of Membrane Computing”. Natural Com-
puting Series, Springer Verlag, (October, 2006).

[3] G. Ciobanu, G. Wenyuan, ”A P system running
on a cluster of computers”, Proceedings of Mem-
brane Computing. International Workshop, Tar-
ragona (Spain). Lecture Notes in Computer Sci-
ence, vol 2933, Springer Verlag (2004), 123-150.

[4] A. Syropoulos, E.G. Mamatas, P.C. Allilomes,
K.T. Sotiriades, ”A distributed simulation of P
systems”. Preproceedings of theWorkshop on Mem-
brane Computing (A.Alhazov, C.Martin-Vide and
Gh.Paun, eds); Tarragona, vol July 17-22 (2003),
455-460.

[5] J.A. Tejedor, G. Bravo, L. Fernández, F. Arroyo,
”An Architecture for Attacking the Bottleneck
Communication in P System”. AROB 12th. Inter-
national Symposium on Artificial Life and Robot-
ics, Oita (january, 2006) (accepted).

[6] D.E. Cormer, D.L. Stevens, ”Internet networking
with TCP/IP. Vol 3”’. Prentice Hall, International
Editions (1993).


