
Identification of Exon-intron Boundaries by Integration of
Base-oriented Genetic Programming and Statistical Heuristics

Kunihito YAMAMORI Yuji FUJITA Masaru AIKAWA Ikuo YOSHIHARA
Univ. Miyazaki Mitsubishi Space Software Univ. Miyazaki Univ. Miyazaki

Miyazaki 889-2192 Ibaraki 305-0032 Miyazaki 889-2192 Miyazaki 889-2192

Abstract
Genetic Programming (GP) is one of the promising

methods to detect exon-intron boundaries from DNA se-
quences. In conventional method, two- or four-bit binary
codes represent four bases, and each bit of codes are used
as input to the identification model. These bit-oriented GP
is simple, but it is difficult to know which bases are key
to identify the boundary. Here we develop a novel base-
oriented GP which can directly use bases as inputs. More-
over, we integrate the model generated by base-oriented
GP with heuristics that is defined as bias of appearance
frequencies on particular loci around “GT” and “AG” ex-
tracted from about 8,000,000 DNA sequences. Simulation
results show that our method can improve the accuracy
about 10% on the“ AG”boundary identification.

1 Introduction

A gene in DNA consists two parts; one is exon and the
other is intron. Exon encodes information how to synthe-
size proteins. Intron exists between exons, and function
of intron is not clear still yet. Now it is a very important
subject to automatically extract exon regions and intron re-
gions from DNA to diagnose some kinds of diseases or to
create new medicine. However, it is very difficult to ana-
lyze gene data because it is too many and still increasing
day after day.

To automatically extract exons and introns from DNA
sequences by computers, Some methods have been inves-
tigated until now. Kamimai[1] had proposed multi-modal
neural network and succeeded to improve accuracy of iden-
tification. Ohta[2] had developed a combination of GA
(Genetic Algorithm) and GMDH (Group Method of Data
Handling), and showed good performance of identifica-
tion. In these method all bases in a region including fo-
cusing bases are encoded to two- or four-bits binary codes,
and each bit is used as inputs to the identification model.
These binary encoding lead indistinctness which bases are
the keys to identify boundaries.

Our aim is to develop a method that can directly use

Junk Junk Junk

Gene

transcript region

non-transript region

Boundaries

exon intron exon

Figure 1: DNA and gene.

the bases as inputs to the model, and it also achieves accu-
rate exon extraction from DNA sequences. So we modify
Genetic Programming (GP) to be able to handle the base
characters directly. And we combine the GP and statistical
heuristics extracted from 8 million DNA sequences.

2 DNA sequences and heuristics

2.1 Decision of input region

Figure 1 illustrates that most 5’-end and 3’-end of in-
trons has the bases “GT” and “AG”[3]. Since the sequences
“GT” and “AG” also appear in exons and introns, it is im-
possible to identify boundaries by this rule. On the other
hand some bases often appear in specific locus around the
boundary. We utilize this bias of appearance to identify
boundaries between exons and introns.

Human DNA sequences was obtained from NCBI1

database, then ±200 bases around “GT” or “AG” are ex-
tracted. The number of extracted sequences is as follows;

• Sequences with “GT”

– Boundary data: 26,046

– Non-boundary data: 7,610,718

• Sequences with “AG”

– Boundary data: 22,633

– Non-boundary data: 8,481,368

Locus

Address

Figure 2: Addressing for loci.

Here P(b, X) denotes the appearance probability of the
base ‘X’ at the locus b, and the address of locus b is defined
as shown in Figure 2. The P(b, X) only from sequences in-
cluding boundary is described as PB(b, X), and that without
boundary is also described as PN(b, X). Then the differ-
ence Pd(b, X) between PB(b, X) and PN(b, X) is calculated
as Equation (1).

Pd(b, X) = PB(b, X) − PN(b, X), (1)

here b = {−200,−199, · · · ,+200} and X ∈ {A,G,C,T }.
From the bias of Pd(b, X), we decide to use 20 bases to

identify “GT” boundary (10 bases for 5’-side and 3’-side),
and 37 bases to identify “AG” boundary (30 bases for 5’-
side, 7 bases for 3’-side)[4].

Fujita[4] also said that the appearance frequencies of
specific bases at some loci are different between bound-
aries and non-boundaries. So we define heuristics as the
combination of the base and the locus with high bias in ap-
pearance frequency. These combination of specific loci and
bases is integrated with GP by the following two method.

2.2 Majority method

In this way Pd(b, X) is used as heuristics and combined
through the majority operator into the model generated by
GP. Following steps shows how to combine the model and
the heuristics.

Step.1 Calculation of Pd(b, X).

Step.2 Four combinations of b and X with the highest
|Pd(b, X)| are selected as heuristics.

Step.3 Four sub-trees consisting of a terminal node and
a comparing node explained in Section 3 are con-
structed. The comparing node has Eq(X, I) if the bias
of appearance frequency at the locus b is positive.
Otherwise it has Eq(X, I).

Step.4 Four sub-trees and an individual generated by
GP is combined through the tree-fifth majority node
M(3/5).

All individuals combine with the same heuristics, and the
fitness is evaluated by the output of the final M(3/5). The
same sub-trees as the heuristics never appear in individuals.

1National Center for Biotechnology Information

2.3 Embedding method

In this method a couple of bases are used as heuristics.
These heuristics are called as 2-tuple heuristics. The 2-
tuple heuristics are found from the ±200 bases around the
focusing “GT” and “AG”, then 30 2-tuple heuristics will be
combined with the model by the following steps.

Step.1 The appearance frequency P2
B(b1, b2, X1, X2) and

P2
N(b1, b2, X1, X2) are calculated from boundary data

and non-boundary data, respectively. Here b1 and b2
is address of locus, and X1 and X2 denote bases.

Step.2 Calculation of P2
d(b1, b2, X1, X2) =

|P2
B(b1, b2, X1, X2) − P2

N(b1, b2, X1, X2)|.

Step.3 30 combinations of (b1, X1) and (b2, X2) with the
largest P2

d(b1, b2, X1, X2) are selected as the 2-tuple
heuristics.

Step.4 Two sub-trees are constructed; a terminal node b1
and a comparing node Eq(b1, X1), and a terminal node
b2 and a comparing node Eq(b2, X2).

Step.5 The comparing node with “AND” operator inte-
grates two sub-trees if P2

d(b1, b2, X1, X2) > 0. Oth-
erwise they are integrated by a node with “NAND”
operator.

These 2-tuple heuristics are inserted into individuals at
the following processes.

Insertion into initial individuals: 30 individuals are ran-
domly selected and a part of individual is exchanged
to a 2-tuple heuristics at the generation of initial pop-
ulation.

Insertion at mutation process: A part of individual is ex-
changed to 2-tuple heuristics at the mutation process.

3 Genetic operations

3.1 Operators

In this research we directly use the base characters
themselves as inputs to GP. Figure 3 shows an example of
individual to identify boundaries generated by GP. Fig.3
shows that terminal nodes keep the address of locus, and a
non-terminal node is either a logic operator or a comparing
operator. A node with a logic operator calls as a logic node,
and a node with a comparing operator also calls a compar-
ing node. Equation (2) says that the comparing operator

Logic Operator

Comparing

Operator

Locus

Address

Figure 3: An example of individual.

Table 1: Logic operators in the model.
#s of arguments logic operator

1 NOT
2 AND OR XOR NAND NOR XNOR

M(2/3) Two-third majority
3

NM(2/3) Negative of M(2/3)

returns 1 if the input I from the terminal node is as same as
the target base character X.

Eq(X, I) =
{

1 X = I,
0 X , I, X, I ∈ {A,G,C,T } (2)

Table 1 shows available logic operators in logic nodes.
Since an output of a terminal node is a character and inputs
to a logic operator have to be boolean, a comparing node is
coupled with a terminal node. These nodes are arranges as
a tree for a boundary identification model.

3.2 Genetic operations

To make models, GP performs the following genetic op-
erations.

Initialization: It randomly generates terminal nodes, logic
nodes and comparing nodes, then arranges them as in-
dividuals.

Crossover: It randomly selects two individuals then ex-
change a part of individual (sub-tree) each other. So
two children are generated by this operation. This
operation does not allow some kinds of sub-tree ex-
changing because a terminal node must combine with
a comparing node. The combinations of exchangeable
nodes are completed in Table 2. In Table 2, L. node,
C. node and I. node denote a logic node, a comparing
node and an input node, respectively.

Fitness evaluation: Equation (3) defines the fitness.

f itness =

T∑
k=1

Zk, (3)

Zk =

{
1, Y ′k = Yk,
0, Y ′k , Yk,

Table 2: Available combination at crossover operation.
L. node C. node I. node

L. node OK OK NG
C. node OK OK NG
I. node NG NG OK

where Yk is 1 when the identification result by model
says true (boundary) and Y ′k is also 1 when the k-th
sequence is actually boundary. So

∑T
k=1 Zk means the

sum of the correctly identified sequences.

Mutation: This operation randomly exchange the opera-
tor in a node to the other one with the same number
of arguments if the selected node is a logic node. If a
terminal node is selected, the other locus is employed.
When a comparing node is selected, the other com-
paring operation take place of original one.

Selection: roulette strategy and elite preserving are em-
ployed.

4 Experiments and discussions

4.1 Parameters

We make eleven data sets from the sequences mentioned
in Section 2, then a data set is used for model generation,
and the others are used for model evaluation. No duplica-
tion exists among the data sets. The parameters of GP for
simulations are as follows;

• Numbers of individuals: 100

• Maximum nodes in a model: 200

• Crossover ratio: 100%

• Mutation ratio: 1%

• Maximum generations: 4,000

The number of simulations are 10 on each data set for
model evaluation.

4.2 Measures for evaluation

Sensitivity S n and Specificity S p defined by Equation (4)
and Equation (5) evaluate accuracy.

S n =
Nc

B
× 100 (%), (4)

S p =
Nc

Nc + Nm
× 100 (%), (5)

Figure 4: S n by each method on “AG” boundaries.

Figure 5: S p by each method on “AG” boundaries.

where B denotes the number of boundary data, Nc and Nm

denote the number of correctly identified boundaries and
miss identified non-boundaries, respectively.

4.3 Results and discussions

Figure 4 and Figure 5 show the average S n and S p for
verification sequences. Here we only show the result on
“AG” boundaries because relatively poor results was re-
ported in previous works[2]. In Fig.4 and Fig.5, “Standard”
means the result by GP without heuristics.

In Figure 4, S n by majority method falls about 10% than
that of standard GP, it means the model combined with
the majority operator often ignore the boundaries. It is
because the answer from the model generated by GP and
answers from the heuristics sometimes compete and can-
cel each other. Figure 5 illustrates that the GP with 2-tuple
heuristics improves S p about 10% than that by standard
GP. It means that the embedding method can detect more
boundaries than those by the other methods, and less non-
boundaries are detected as boundaries.

Experimental results show that embedding method with
2-tuple heuristics improves accuracy of boundary identifi-
cation with keeping boundary detection.

5 Conclusions

Automatic extraction of exon regions from DNA se-
quences is very difficult because the sequences have too
much variety, and the number of sequences is also too huge.
In particular, the identification of “AG” boundaries was
not accurate by previous works because features to iden-
tify “AG” boundaries dispersedly exist in sequences.

In this research we develop a novel method to identify
boundaries. At first, we decide the appropriate region for
boundary identification from the bias of appearance fre-
quencies on bases at each locus. The analysis reveals that
±10 bases are enough for “GT” boundaries, and 37 bases
for “AG” boundaries. Then we think out a novel base-
oriented identification model for GP that can directly han-
dle the character of bases. Finally we compare the two
method to integrate the model by GP and statistical heuris-
tics. The embedding method achieved about 10% accuracy
improvement to detect “AG” boundaries.

To achieve more accurate identification, the model con-
sidering solid structure of protein will be remaining as fu-
ture works. Furthermore faster processing is also needed.

Acknowledgments

A part of this research is supported by Grant-in-Aid for
Scientific Research #17700239.

References

[1] Y. Kamimai, I. Yoshihara, K. Yamamori and M. Ya-
sunaga, “Methods to Extract Exon Regions from DNA
Sequence – Development of Multi-modal Neural Net-
work –”, Fuzzy, Artificial Intelligence, Neural Net-
works and Computational Intelligence (FAN’02), pp.
385–390 (2002).

[2] T. Ohta, I. Yoshihara, K. Yamamori and M. Yasunaga,
“GP-based Method for Identifying Exon Region in
DNA Sequences”, Proc. 4th Asia-pacific Conference
on Simulated Evolution and Learning (SEAL’02), pp.
cr1333(CD–ROM) (2002).

[3] M. B.Shapiro and P. Senapathy, “RNA splice junctions
of different classes of eularyotes: sequence statistics
and functional implications in gene expressions”, Neu-
cleic Acids Research, Vol. 15, pp. 7155–7175 (1987).

[4] Y. Fujita, K. Yamamori, I. Yoshihara and M. Aikawa,
“Generation of Character-base Model by Genetic
Programming to Identify Exon-Intron Boundaries”,
Tech.Report IEICE (CAS2005-75), Vol. 105, No. 503,
pp. 1–6 (2006) (In Japanese).

