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Abstract
In previous studies, we have proposed an algorithm

named the edge histogram based sampling algorithm
(EHBSA) with EDA scheme for permutation domains.
In EHBSA, new solutions are obtained by combining
partial solutions which exist in the current population,
and partial solutions newly generated according to an
edge histogram model of the current population. In
this paper, we show using partial solutions can main-
tain the diversity of the population, resulting in a suc-
cessful search. We also show that using partial solu-
tions in ACO can greately enhance its performance.

1 Introduction

Genetic Algorithms (GAs) are widely used as
robust black-box optimization techniques applicable
across a broad range of real-world problems. GAs
should work well for problems that can be decomposed
into sub-problems of bounded difficulty [1]. However,
fixed, problem-independent variation operators are of-
ten incapable of effective exploitation of the selected
population of high-quality solutions [1, 2]. One of the
most promising research directions is to look at the
generation of new candidate solutions as a learning
problem, and use a probabilistic model of selected so-
lutions to generate the new ones [3, 4]. The algorithms
based on learning and sampling a probabilistic model
of promising solutions to generate new candidate solu-
tions are called estimation of distribution algorithms
(EDAs) [5] or probabilistic model-building genetic al-
gorithms (PMBGAs) [3].

Most work on EDAs focuses on optimization prob-
lems where candidate solutions are represented by
fixed-length vectors of discrete or continuous variables.
However, for many combinatorial problems permuta-
tions provide a much more natural representation for
candidate solutions. Despite the great success of EDAs
in the domain of fixed-length discrete and continuous

vectors, only few studies can be found on EDAs for
permutation problems [6, 7].

In previous studies [8, 9], we have introduced a
promising approach to learning and sampling prob-
abilistic models for permutation problems using edge
histogram models. This algorithm is called the edge
histogram based sampling algorithm (EHBSA). In
EHBSA, new solutions are created by combining par-
tial solutions which exist in the current population,
and partial solutions newly generated based on the
edge histogram model of the current population. The
EHBSA worked well on several benchmark instances
of the traveling salesman problem (TSP). Nonethe-
less, the methods proposed are not limited to TSP, like
most other TSP solvers and specialized variation oper-
ators. As a result, this approach provides a promising
direction for solutions of other problems that can be
formulated within the domain of fixed-length permu-
tations; flow shop scheduling is an example of such a
problem as described in [9].

In this paper, we focus our attention on the effects
of using partial solutions in EHBSA. The basic sam-
pling algorithms in EHBSAs are very similar to the
sampling algorithms that are used in ant colony opti-
mization (ACO) [10, 11] and thus this method can be
applied to ACO [12]. We also discuss these results.

In the remainder of this paper, Section 2 gives a
general scheme for using partial solutions in EDAs. In
Section 3, we discuss the effect of using partial solu-
tions in EHBSA and show how using partial solutions
can maintain the diversity of the population, resulting
in a successful search. The effectiveness of using par-
tial solution in ACO is discussed in Section 4. Finally,
Section 5 concludes this paper.

2 Using Partial Solutions in EDAs

Figure 1 shows a typical scheme of EDAs. EDAs
evolve a population of candidate solutions to the



given problem by building and sampling a probabilis-
tic model of promising solutions. EDAs start with a
random population of candidate solutions (individu-
als). Each iteration of EDAs starts by selecting better
individuals from the current population. Next, the
probability distribution M of the selected population
of individuals (P sel) is estimated. New individuals are
then generated according to this estimate, forming the
population of candidate solutions for the next gener-
ation. The process is repeated until the termination
conditions are satisfied.

The scheme of EDAs with partial solutions is shown
in Figure 2. In the figure, new solutions are obtained
by combining partial solutions which exist in the cur-
rent population, and partial solutions newly generated
according to the model M of P sel. What kind of effect
can we be expected with this scheme in Figure 2? In
a typical EDA scheme in Figure 1, new solutions are
directly reflected from the distribution of P sel. If the
selection operator is not designed properly, the repeti-
tion of iterations within the scheme may cause strong,
but incomplete positive feedback to model M , result-
ing in a premature convergence of the population and
a failed search. On the other hand, with the scheme
described in Figure 2, new solutions are generated not
only according to model M but also using partial so-
lutions from the existing solutions in P . This reduces
the rapid change of the population. Thus, we can ex-
pect that using partial solutions as shown in Figure 2
has the effect of maintaining diversity and preventing
premature convergence of the population.
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Figure 1: General Scheme of EDAs

3 EHBSA

3.1 Edge Histogram Model

An edge is a link or connection between two nodes.
The basic idea of the edge histogram based sampling
algorithm (EHBSA) is to use the edge distribution of
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Figure 2: Scheme of EDAs with Partial Solutions

the whole population in generating new strings. The
algorithm starts by generating a random permutation
string for each individual population of candidate so-
lutions. Promising solutions are then selected using
any popular selection scheme. An edge histogram ma-
trix (EHM) for the selected solutions is constructed
and new solutions are generated by sampling, based
on the edge histogram matrix. New solutions replace
some of the old ones and the process is repeated un-
til the termination criteria are met. An example of
EHM at t EHM t = (et

i,j) is shown in Fig 3. The in-
teger value of each (et

i,j) represents number of edges
from node i to node j in the population. The frac-
tional value represents minimum value to give a bias
to control pressure in sampling nodes.
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Figure 3: An Example of EHM

3.2 Using Partial Solutions in EHBSA

In EHBSA, a template individual, from which a
partial solution is obtained, is chosen from P (t) (nor-
mally, randomly). A crucial question when we create a
new solution c[] is how to determine which part of the
partial solution the c[] will borrow from the template.
To ensure robustness across a wide spectrum of prob-
lems, it is advantageous to introduce variation both
in the portion and the number of nodes of the partial
solution that is borrowed from the template. First we
choose the starting node position of the partial solu-
tion randomly. Thereafter, the number of nodes of the



partial solution must be determined. Let us represent
the number of nodes that are constructed based on
EHM by ls. Then, lc, the number of nodes of the par-
tial solution, which c[] borrows from the template, is
lc = L–ls. Here, let us introduce a control parameter
γ which can define E(ls) (the average of ls) by E(ls) =
L×γ. To determine the sampling portion in a string,
we used the n cut-point approach in previous study
[8]. However with the approach, E(ls) is L/2, L/3, .
. . for n= 2, 3, and so on, and, γ corresponds to 1/n,
i.e., γ can take only the values of 0.5, 0.333, and 0.25,
corresponding to n= 2, 3, 4 and so on. In the current
research, we extend this elementary method to a more
flexible technique which allows for γ taking values in
the rage [0.0, 1.0]. The probability density functions
for ls in this research are:

fs(l) =
1 − γ

Lγ

(
1 − l

n

) 1−2γ
γ

, for 0 < γ ≤ 0.5. (1)

fs(l) =
γ

L(1 − γ)

(
l

n

) 2γ−1
1−γ

, for 0 < γ ≤ 0.5. (2)

Using partial solutions in EHBSA is summarized in
Figure 4. For a given γ value, ls is generated according
to Eqs. 1 or 2, and ctop, the first position of partial
solution for c[] to borrow from the template, is sam-
pled randomly. Then, the partial solution of length
lc = L–ls, and which starts from ctop is copied to c[]
from the template. Then the remaining sequence of
nodes of length ls in c[] is sampled according to EHM
probabilistically.
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Figure 4: Using partial solutions in EHBSA

3.3 Results

In this section, we show the results using the scheme
described in Section 3.2 on TSP instances of gr48 and
pr76. The γ values were tested from 0.1 to 1 with step
size 0.1. Here note that γ = 1 corresponds to the case

where no partial solutions are used. The following
control parameter values were used: population size
N = L×2 (L is the number of cities), maximum num-
ber of tour constructions Emax = L×20, 000. Results
are summarized in Table 1 where #OPT indicates the
number of runs which found the best-known solution,
MNE indicates the mean number of tour construc-
tions to find the best-known solution in those runs
where it did find the solution, and Error indicates
the average excess value from the best-known solution
over 25 independent runs.

From these results, we can see that good results of
#OPT , MNE, and Error are found with γ values
in [0.3, 0.4] for both gr48 and pr96. In the case in
which we do not use partial solutions (γ = 1), the sec-
ond worst results were obtained on both instances, i.e.,
#OPT = 0 for both instances, and a Error = 1.159%
for gr48 and Error = 9.747% for pr76, respectively.

Table 1: Results of EHBSA on gr48 and pr76

#OPT MNE Error #OPT MNE Error

0.1 0 - 1.753% 0 - 14.895%

0.2 25 185458.3 0.000% 10 1276794.0 0.175%

0.3 25 115680.5 0.000% 24 735272.6 0.005%

0.4 24 113575.6 0.022% 23 595011.3 0.010%

0.5 23 135540.6 0.029% 21 622464.3 0.045%

0.6 16 182385.0 0.099% 17 687602.9 0.092%

0.7 4 256192.0 0.278% 13 960202.4 0.115%

0.8 0 - 0.682% 2 1400801.5 1.076%

0.9 0 - 0.912% 0 - 5.336%

1 0 - 1.159% 0 - 9.747%

gr48 pr76

Figure 5 shows the change of the diversity of the
population. Here, the diversity was measured by the
standard deviation (STD) of tour length of individuals
in the population and was averaged over 25 runs. From
this figure, we can see that for γ = 0.1 the change of
the STD is very slow. This is because only 10% of
new edges are sampled in generating a new string on
average. Thus, the population did not converge in the
defined maximum number of tour constructions Emax.
With γ values of 0.3, and 0.4, each STD gradually
becomes smaller as the number of tour constructions
increases, resulting in successful searches. However, in
the case in which we do not use partial solutions (γ =
1), the population loses diversity rapidly, resulting in
a failed search. Thus, we can see the effectiveness of
using partial solutions with appropriate γ values.

4 Using Partial Solutions in ACO

As a bio-inspired computational paradigm, ACO
has been applied with great success to a large number
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Figure 5: Change of population diversity on gr48

of hard problems in permutation domains [11]. The
first ACO algorithm was called the Ant System (AS),
and was applied to the TSP. Since then, many variant
ACO algorithms have been proposed as extensions of
AS [11]. On a TSP, AS works as follows: Let m be the
total number of ants. Initially, each ant is put on a
randomly chosen city k(k=1, ..., n). Let τ ij(t) be the
trail density on edge (i, j) at iteration t. Each of m
ants at iteration t makes a tour by choosing a sequence
of cities. When all ants complete their tours, the trail
density of each edge on their tours is updated. We
can note here that the τij(t) corresponds to EHM t =
(et

i,j) of EHBSA and thus ACO has a tight relation
with EDAs.

In this section, we present the results of a new ACO
which uses partial solutions in generating new solu-
tions. Please see [12] for more detail. The algorithm
is called the cAS (cunning AS). In traditional ACO
algorithms, each ant generates a solution probabilisti-
cally or pseudo-probabilistically based on the current
pheromone trail τij(t). In cAS, an agent called cun-
ning ant (c-ant) is introduced. The c-ant differs from
traditional ants in the manner of solution construc-
tion. It constructs a solution by borrowing a part of
existing solutions. The remainder of the solution is
constructed based on τij(t) probabilistically as usual.
An agent which has a solution borrowed by a c-ant is
called a donor ant (d-ant). Using c-ant in this way,
we can prevent premature stagnation the of search, be-
cause only a partial solutions are newly generated, and
this can prevent over exploitation caused by strong
positive feedback to τ ij (t) as discussed in Section 2.

Figure 6 illustrate the convergence process by the
change of Error on kroA100 TSP instance for γ val-
ues of 0.1, 0.3, 0.5, 0.7, and 0.9. Early stagnations
of search can be observed with γ vales of 0.7 and 0.9.
With γ values of 0.3 and 0.5, stagnations of search oc-
cur much later in the search. With a γ value of 0.1,
no stagnation can be observed. But the convergence

process is very slow. Thus we can see that using appro-
priate small values of γ can prevent over exploitation.
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Figure 6: Convergence process on kroA100

Here we show cAS with a local search on TSP. One
of the best performing local searches for TSP is the
well-known Lin-Kernighan algorithm (LK) [13]. We
used a Chained LK which applies the basic LK re-
peatedly. For γ value, γ =0.4 was used.

Table 2: Results of cAS with LK on TSP. Tavg is aver-
age time in second to find optimal in successful runs.
The machine we used had two Opteron 280 (2.4GHz)
processors with Java code.

#
O

P
T Error

(%)
T avg

#
O

P
T Error

(%)
T avg

#
O

P
T Error

(%)
T avg

#
O

P
T Error

(%)
T avg

pr2392 25 0.00 104.9 24 0.00 137.2 12 0.00 211.3 4 0.17 122.4 240

fl3795 25 0.00 435.1 15 0.00 615.9 17 0.00 770.7 0 0.57 - 1400

rl5934 25 0.00 1336.1 1 0.00 1854.6 10 0.00 2533.6 0 0.27 - 3300

Chained LK 

TSP T max

c AS ( =0.4) non-c AS ( =1)

c AS
MMAS

To confirm the effectiveness of combining cAS with
LK, we also tested the following three algorithms:
non-cAS with LK (i.e., γ=1; no partial solutions are
used), MMAS with LK, and Chained LK alone. The
results are shown in Table 2. We can see all algorithms
of cAS, non-cAS, and MMAS showed very small val-
ues of Error by combining LK and thus the advantage
of combining these algorithms with LK is very clear.
However, when we focus our attention on the results of
#OPT, all algorithms except for cAS could not attain
#OPT = 25. In contrast to this, cAS could attain
#OPT = 25 within the allowed run time Tmax show-
ing the smallest Tavg (average time in seconds to find
optimal in successful runs) among algorithms tested.
Thus, we can see that using partial solutions is use-
ful when the approach is combined with local search.
Figure 7 shows the variations of Tavg and #OPT for
various γ values.
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Figure 7: Results of cAS for variable γ values with LK
on (1) fl3795 and (2) rl5934

5 Summary

In previous studies, we have proposed an algorithm
referred to as the edge histogram based sampling al-
gorithm (EHBSA) with EDA scheme for permutation
domains. In EHBSA, new solutions are obtained by
combining partial solutions which exist in the current
population, and partial solutions newly generated ac-
cording to an edge histogram model of the current
population. In this paper, we showed that using par-
tial solutions can maintain diversity of a population
resulting in a successful search. We have also shown
that using partial solutions in ACO can greatly en-
hance its performance. Thus, we can expect that a
scheme using partial solutions in generating new solu-
tions can be used in a wide range of EDAs. Appling
this scheme to EDAs in other domains, such as real
coding and binary coding remains for for future work.
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[4] P. Larrañaga and J. A. Lozano, Estimation of dis-
tribution algorithms: A new tool for evolutionary
computation, Kluwer, Boston, MA, 2002.

[5] H. Mühlenbein and G. Paaβ, “From recombina-
tion of genes to the estimation of distributions
I. binary parameters,” Proc. of the 4th Paral-
lel Problem Solving from Nature (PPSN IV), pp.
178-187, 1996.

[6] P. A. N. Bosman and D. Thierens, “Permutation
optimization by iterated estimation of random
keys marginal product factorizations,” em Par-
allel Problem Solving From Nature (PPSN VII),
pp. 331-340, 2002.

[7] V. Robles, P. D. Miguel, and P. Larrañaga, “Solv-
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