
1. INTRODUCTION 
 
Almost all of studies of sliding mode control (SMC) 

have been proposed in the continuous-time domain[1-2]. 
In the actual system, however, controller is implemented 
in the discrete time domain since they use micro-
processors and/or digital computers. Recently, discrete-
time sliding mode control (DSMC) has been studied 
extensively to address various controllers using specific 
principles [3-6]. However, the research of discretizing a 
continuous-time SMC for digital implementation has 
not been fully explored. Furthermore, it is also well 
known that a control system designed in the continuous-
time domain may become unstable after sampling.  

Recently chaotic behaviors were found in discretizing 
continuous SMC systems by X. Yu [7-8].  Yu and G. 
Chen proposed the sufficient conditions for discretized 
system to be GUUB [9]. But these sufficient conditions 
can be only applied to limited sampling period and 
specialized cases.  

In this paper, therefore, a novel sufficient condition 
for discrete sliding mode controller (SMC) to be 
globally uniformly ultimately bounded (GUUB) is 
proposed. It is shown that the stability of the overall 
system can be known by checking out the magnitude of 
one parameter which is an element of the discretized 
system matrix. The ultimate bounds of the system state 
variables are also derived. Simulation results for a 
single-link robot arm are presented to show the 
effectiveness of the proposed method. 
 

 2. SYSTEM DESCRIPTION 
  

Consider a second-order system of the following 
form   
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where 2x R ∈ is the state vector, 1u R ∈  is the 

system input, and 1 2,a a   are elements of a system 

matrix. Let the sliding surface be [ ]1
Tc x c xσ = =  1 , 

where 1 0c > is assumed to be designed such that the 
sliding dynamics, 0σ = , are asymptotically stable. 
From 0σ = , we can easily obtain the equivalent 
control law as  
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From the sliding mode existence condition, 0σσ = , 
we have the following equivalent control based SMC:  
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where 0α > is a control gain, and sgn( )⋅ is a signum 

function. It’s assumed that Tc b  is nonsingular. 
To discretize the overall system, we convert the 

continuous-time system (1) under the zero-order hold 
(ZOH) to the discrete-time system 

0
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h  is a sampling period, and the index k  indicates the 
-k th sample. 
As the system state ( )x k  evolves, the switching 

function sgn( ( ( )))x kσ forms a sequence of binary 
values of 1− and 1+ . For simplicity, we denote 
sgn( ( ( )))x kσ as { 1, 1}ks ∈ −   .  

Then the discretized system can be described by  
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where 
0

hAh A Te e d bc Aτ τΦ = − ∫ , 
0

h Ae d bτ τΓ = ∫ .  

Equation (5) can be rearranged as 
1 1 2 1( 1) ( ) ( ) ,kx k x k vx k sγ α+ = + −             (6)  

2 2 2( 1) ( ) kx k dx k sγ α+ = − .                 (7) 
 

3. STABILITY CONDITION OF DISCRETE 
SLIDING MODE CONTROLLER 

 
Generally, the asymptotic stability can be guaranteed 

if the sliding mode controller with a constant gain is 
implemented in the continuous-time domain. For the 
discrete-time system, however, the ultimate 
boundedness can be ensured. In the following theorem, 
we derive conditions for the stability of the closed-loop 
system with discrete SMC (4). 
 

Theorem 1: For the discretized systems (6)~(7) with 
the discrete SMC (4), the overall system is globally 
uniformly ultimately bounded (GUUB) if 

| ( ) | 1 <d h .                               (8) 
and 
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Furthermore, ultimately bound of the system state 
variables are given by 
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Proof: From (7), It is clear that (8) has to be 

satisfied because the pole of the system (7) should be 
located inside the unit circle. It is obvious that the 
ultimate bound of 2x  can be obtained as (11). When 
the state 2x  reaches its ultimate bound, we say 2x  
is on the equilibrium line, (6) can be rewritten as 
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In order to the state 1x  converges to the sliding 
surface, the last two terms of (12) should satisfy the 
following inequality:  
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The ultimate bound of the state 1x  can be derived by 
considering the switching points – intersection of the 
sliding surface and the equilibrium lines. Since the 
points are on the sliding surface and equilibrium line, 

2x  should have a value of its ultimate bound, and 1x  
has to satisfy 

1
1 1 2( ) ( ).x k c x k−= −                        (14) 

Substituting (14) into (6) gives  
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From (15), therefore, the ultimate bound of 1x  can 
be obtained as (10). 

                       
Theorem 1 needs two conditions, (8) and (9), to 

check the stability of the discretized system. Actually, 
the condition (9) contains four variables, 1 2, , ,v d γ γ      , 
whereas the condition (8) is composed of only one 
variable d .  In the following theorem, we show that 
it is sufficient to check the condition (8) to guarantee the 
stability of the overall system.  
 

Theorem 2: For the closed-loop system (5), if the 
inequality (8) holds, then the inequality (9) is also 

satisfied. That is, | | 1d  <  implies 2
1 0.

1
v

d
γ
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−

 

 
 Proof: Due to the page limitation, the proof is 

omitted. 
           

Remark 1: From Theorem 1 and 2, the stability of 
the overall system can be obtained by checking up the 
magnitude of d . 
 

Remark 2: In the conventional digital system, the 
stability of the closed-loop system depends on the 
sampling period, and is given by one inequality. For the 
constant-gain sliding mode controller for the sampled-
data system, however, the stable region of the sampling 
period may be composed of several supports. For 
example, for a single-link robot arm, the stable region 
for the sampling period h  is given as a shaded region 
as in Figure 1. 

 
Fig. 1 Stable sampling period. ( | ( ) | 1d h  < ). 

 
4. SIMULATION STUDIES  

 
Consider the model of a pendulum without damping. 

A second-order system of the pendulum can be 
represented as  



 
1sin .g u

l m
θ θ= − +                      (55)  

where g is the acceleration of gravity, 1l m=  and 
1m kg=  are the length and mass of pendulum. Assume 

that θ  is small enough that sinθ θ≈ .  
Figures 2~5 are results when 0.1=h  second. From 

Figure 1, it’s clear that the system is stable for the 
sampling period. Figure 2 shows the phase portrait. It’s 
very similar to that of continuous-time system. In 
addition, it is shown that, in the steady state, the system 
states are bounded by the region given in Theorem 1: 

1 2( ) 0.61,  ( ) 0.67∞ ≤ ∞ ≤x x .  
It is also can be seen in Figures 3~4.  

Figures 6~9 are results when 1.5=h  second. From 
Figure 1, it’s obvious that the system is stable for the 
sampling period. For this sampling period, in the steady 
state, the profile of the state variables show a kind of 
limit cycle; periodic solution (Fig. 6), and their bounds 
given in Theorem 1 are as follows: 

1 2( ) 0.86,  ( ) 0.46∞ ≤ ∞ ≤x x  
Figures 7~8 show that the state variables show the 
period-12 profiles. 

Figures 10~12 are results when 0.9=h  second. 
From Figure 1, it’s easy to know that the system is 
unstable for the sampling period although the sampling 
period is shorter than the another stable one, 1.5=h . 
The unstable profile can be seen in Figures 10~11. 
 

5. CONCLUSION 
 
In this paper, a condition to be GUUB for the sampled-
data system with discrete SMC has been presented. The 
proposed scheme gives a simple way to check up the 
stability of the closed-loop system for a given sampling 
period.  
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Fig. 2 Phase portrait when 0.1=h  

 

 
Fig. 3 State variable 1x  when 0.1=h  

 

  
Fig. 4 State variable 2x  when 0.1=h  



 
Fig. 5 Switching variable s  when 0.1=h  

 

 
Fig. 6 Phase portrait when 1.5=h  

 

 
Fig. 7 State variable 1x  when 1.5=h  

 

 
Fig. 8 State variable 2x  when 1.5=h  

 

 
Fig. 9 Switching variable s  when 1.5=h  

 

 
Fig. 10 State variable 1x  when 0.9=h  

 

 
Fig. 11 State variable 2x  when 0.9=h  

 
 

 
Fig. 12 Switching variable s  when 0.9=h  

 
 


