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Abstract 
 

Localization is most important and necessary 
technology for mobile robot to work well. The robots 
need to recognize their position and pose in known 
environment as well as unknown environment. In the 
future, the robots will be human-friendly robots that are 
able to coexist with humans in dynamic space. The 
localization includes several restrictions which arise 
from dynamic obstacles-people, moving chair, and so on. 
It is desirable for a mobile robot to estimate his position 
using dynamic obstacles. In this paper, we propose the 
method for the localization of the mobile robot using a 
moving object. Throughout the computer simulation 
experiments, its performance is verified. 
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1  Introduction 

 
Localization of the mobile robot is one of the most 

important issues for successful autonomous navigation; 
therefore, a great number of localization methods have 
been proposed and developed so far[1][2].  

The difficult problem that has a substantial impact on 
the localization of the mobile robot is the environment. 
The environments can be static or dynamics[3]. Static 
environments are environments where the only variable 
quantity state is the robot’s pose. Put differently, only the 
robot moves in static environment. All other objects in 
the environments remain at the same location forever. 
Static environments have some nice mathematical 
properties that make them amenable to efficient 
probabilistic estimation. Dynamics environments possess 
objects other than the robot whose location or 
configuration changes over time. Specially, the changes 
persist over time. Examples of more persistent changes 
are people, and moving object such as furniture, chairs, 
and so forth. A good example of dynamic environments 
is shown in figure 1. Because of various uncertainties 
and limitation of sensor information for dynamic 
changes, localization in the dynamics environments is 
obviously more difficult than localization in the static 
ones. Therefore, there are two general methods for 
estimation of location under each environment. Under 
static environment, the localization of the mobile robot is 
based on landmark method using the wall, corner and 

door recognition. This method requires feature extraction 
of static obstacle or landmark. However, unfortunately, 
most real environments are dynamics with state changes 
occurring at a range of different speeds. Thus, for most 
real-world application, it is desirable that mobile robots 
are capable of exploring or moving within a dynamics 
environments[4].  

This paper considers the situation where a mobile 
robot is moving an unstructured environment, there is 
only moving object. In this paper, we present a method 
for solving previous problem using ultrasonic sensor, 
which is able to measure the distance between the 
moving object and the mobile robot. The movements of 
object can be detected by sonar sensor, and then the 
position of the moving object is estimated. Using the 
distance data, the robot’s position can be estimated. 

This paper is organized as follows. Section 2 shows a 
kinematics modeling and position estimation of the 
mobile robot. In Section 3, the method that detects the 
moving object using ultrasonic sensor is described, the 
position correction technique with Kalman-filter is 
shown. In Section 4, the experiments environment and 
computer simulation results are shown to prove the 
validity of the proposed method. Finally, in Section 5, 
conclusion and further research topic are presented.  

 
Fig. 1. The mobile robot in dynamic environments. 

 
 

2  Robot Modeling  
 

2.1  Kinematics modeling of a mobile robot 
 
The modeling of a mobile robot is shown in fig. 2, 

where 
Rx  : the y-component of the mobile robot position; 

Ry  : the x-component of the mobile robot position;  

Rθ  : the orientation of the mobile robot; 

Lv  : the velocity of left wheel;  

Rv  : the velocity of right wheel; 

1v  : the linear velocity of the mobile robot; 



2v  : the angular velocity of the mobile robot;  
l   : the width of the mobile robot. 
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 Fig. 2. Kinematics model of a mobile robot. 

 
A mobile robot with differential driving mechanism 

has two wheels on the same axis, and each wheel is 
controlled by an independent motor. On the two 
dimensional YX − cartesian coordinates, position and 
orientation of the mobile robot is described by state 
vector as follow: 
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The linear and angular velocities of the mobile robot can 
be described as follows: 
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Now the kinematics model of the mobile robot can be 
represented as [5] 
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Kinematics analysis aims at the proper velocity 
assignment to each wheel to drive the mobile robot to a 
desired position and orientation. 

 
2.2  Position propagation 

In previous session, we studied that the states of the 
mobile robot with differential driving mechanism are 
changing according to the two wheel velocities.  
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Fig. 3. Position propagation of the mobile robot.  

 
In Fig. 3, when the mobile robot is moving from A where 
the robot is located on [ ] T

kRRR
k

robot yxP θ=  at time 
= k  to C where the position is on 

[ ] T
nkRRR

nk
robot yxP +
+ = θ  at time = nk + . The state  

transition of the mobile robot can be described in terms 
of currents state and inputs as follows[ ]: 
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where T is the sampling period. 
Note when the position of the mobile robot is estimated, 
state estimation error is included, and represented as 
follow: 
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where )(ku  is the current input, )(kν  denotes 
estimation error as a noise term. The estimation error is 
unexpected components, when position is calculated[6]. 
The error can be corrected by applying Kalman filtering 
technique in Section 3. 
 
 
3  The Localization by Ultrasonic Sensor 
 
3.1  Detecting moving object using sonar sensor 
 

In this section, we describe the procedure of 
detecting a moving object through a distance obtained by 
ultrasonic sensor. When the object is moving, it can be 
detected by sonar sensor, and then distance information 
between the object and the robot is available to robot. 
The position of the mobile robot is updated. Fig. 4. show 
the coordinates of the moving object and the mobile 
robot with 12 ultrasonic sensors. 
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Fig. 4. The outline of motion of object and robot. 
 
As shown fig. 4. the initial position of the object and 

mobile robot is precisely given as 0
obj

P , 0
robotP , 

respectively. Also, the distance d  between the object 
and the mobile robot is denoted.  

There are three steps in procedure of detecting the 
moving object. 

Initially, the mobile robot and the object is kept 
stationary. When the object is moving, distance 
information at time k and k+1, respectively, generate the 
distance differences. When distance differences exceed 
the specified threshold value, thus, resulting in the 
detection of motion of the object.   



Secondary, in case that a distance information is 
obtained by neighboring sensor due to movement of the 
object, the displacement and angular data with respect to 
measuring time, MT  of the object can be calculated as 
shown in fig. 5. And then, the current state of the moving 
object is estimated thought initial state and obtained 
information.  

Finally, the mobile robot moves along a free path 
after estimation of the moving object is finished. The 
inverse method is used to estimate the position of the 
mobile robot. When the object is kept stationary and the 
mobile robot moves, the displacement and velocity with 
respect to the measuring time, MT  of the mobile robot 
can be obtained. The state vector of the mobile robot is 
estimated. 
To obtained the sequential position estimation, we can 
use proposed step recursively. The outputs of step are 
chosen as the estimated state vector of the moving object 
and mobile robot.    
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Fig. 5. The motion of object. 
 
3.2  Correction using Kalman filter  
 

The estimated position of the moving object includes 
some unexpected estimation error. This leads to failure 
in localization of the mobile robot. An Kalman filter[7] 
can be one of the good method to tackle this problem. To 
apply the state estimation of a moving object to the 
Kalman filter, eq.(7) and (8) of the state transition matrix 
are required. The Kalman filter minimizes the estimation 
error by modifying the state transition model based on 
the error between the estimated vectors and the measured 
vectors, with an appropriate filter gain. The state vector 
which consists of a position on the x-y plane, the 
direction, linear and angular velocity can be estimated 
using the measured vectors representing the position of 
the moving object[8]. 

11 −− +Φ= kkkk wxx     (7) 
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The Kalman filter is a recursive algorithm to determine 
kx̂ , the optimal estimation value of state vector, kx  in a 

linear dynamic system. Kalman filtering is divided into 
the three steps of prediction, measurement, and 
correction.  

In the prediction step, the next state vector 1
)(
+
−

Kx  and 
the covariance matrix of the estimated error 1

)(
+
−
kP  are 

predicted. The symbol (-) means that the values don’t 
correct through measurement. The covariance matrix of 

the estimated error is just like eq.(9). 
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The projected estimates of the covariance matrix of the 
estimated error and the state vector in the prediction step 
are represented as 
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where kΦ  is the state transition matrix of kK wx ,ˆ 1
)(
+
−

 is 

the model noise of the system, where kQ  is the 
covariance matrix of kw .  

The measurement step is represented as  
kkkk vxHz += ˆ    (12) 

where kz  is the measurement vector, kH  represents 
the relationship between the measurement and the state 
vector, and kv  is the measurement error. 

In the final correction step, the state vector and the 
estimate error are corrected to a new value based on the 
measurement value of the measurement step. The 
formula is represented as 

1
)()( ])([)( −

−− += kTkkkTkkk RHPHHPK  (13) 

]ˆ[ˆˆ )()()(
kkkkkk xHzKxx −−+ −+=   (14) 

kkkk PHKIP )()( ][ −− −=   (15) 

where kR  is the covariance matrix of the measurement 
noise, and kK  represents the Kalman gain. The optimal 
filter gain kK  minimizes the estimate errors by the 
covariance matrix of the estimate error kP )(−

, the 
measurement matrix 

kH , and the covariance matrix of measurement noise 
kR  in eq.(20). Next time, the estimate of the state vector 

kx )(ˆ +
 from the measurement kz  is expressed as eq.(21). 

The Kalman gain functions as the weighting between the 
measurement and the estimate value when the state 
vector kx  is corrected. In the end, as in eq.(22), the 
covariance matrix of the estimated error is corrected. 
 
 
4  Simulation Experiments 
 
4.1  Experimental environment 
 

The proposed approach is implemented on computer 
simulation program. The experimental parameters 1 for 
computer simulation are listed in Table.  

Let assume some conditions for finding the position 
of moving object and localization of the mobile robot. 

 
1) The maximum velocity of the mobile robot is 

faster than that of moving object.  
2) There is no interference between other ultrasonic 

sensors 
3) The initial position of the robot and object is given. 
4) The path of the robot and object is piecewise 

continuously differential.  
 



Table 1. Simulation parameter 
Parameter list Value 

Size(diameter) of Robot 0.5 m 

Size(diameter) of object 0.15 m 

Number of ultrasonic sensor 12 
Maximum detecting range of 

ultrasonic sensor 3 (m) 

Directivity of ultrasonic sensor 10 (deg) 
 

4.2 Experimental results and discussions 
 
The initial position of the moving object and the mobile 
robot was set as (0.5, 3, 0o) and (1, 2, 10 o), respectively. 
Fig. 6. shows the path of the moving object and the 
mobile robot. 
 

 
Fig. 6. The path of the moving object and robot. 
 
The estimated state vector of the mobile robot by 

only dead-reckoning method with uncertainty is shown 
in fig. 7. And in fig. 8, reduced error with proposed 
algorithm is shown.  

 
Fig. 7. Position estimation error of the mobile robot 
using only dead-reckoning method. 
 

 
Fig. 8. Position estimation error of the mobile 

robot using moving object 

 
5  Conclusions 

 
In this paper, an state estimation method for a mobile 

robot with ultrasonic sensor was proposed using the 
moving object. The estimated errors is reduced using 
Kalman filter. It was demonstrated that localization of 
the mobile robot on computer simulation. 

The localization is one of the fundamental functions 
for intelligent mobile robot. The mobile robot has to 
handle various dynamic uncertainties for localization 
robustly. In further research, proposed method will be 
verified throughout the real experiments with a robot 
system. And the effective localization of the mobile 
robot will be needed to improve the estimation accuracy.  
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