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Abstract

In this paper, we proposed three layered self-
organizing model to extract head direction and posi-
tion of a moving object separetely. The model consists
of three layers, each of which is a self-organizing vector
quantization (VQ) model. The second layer receives
inhibitory input from the first, and the thrid layer re-
ceives inhibitory input from the first and the second.
The first layer is to detect head direction and the sec-
ond and the third are to detect position. The informa-
tion representation in the second and the third layers
is shown to be multi-ary expression and the units in
the third layer develop receptive field with grid struc-
ture as was observed in entorhinal cortex of a rat.

1 Introduction

The self-organizing map (SOM) and the vector
quantization (VQ) are very famous and widely used
among many self-organizing models. They are useful
for application and also important as a computational
models of neural systems.

SOM algorithm was proposed by Kohonen[l] as a
model of the cerebral cortex and its self-organization.
It was successful at reproducing a functional map
of the visual cortex[2, 3], and was applied to many
kinds of data as a statistical tool of nonlinear auto-
regression[1]. This map can extract major informa-
tions from multi-dimensional data[4].

The vector quantization (VQ) is an on-line learning
algorithm to generate reference vectors for a set of
input vectors[1, 5, 6, 7]. For a given input vector, the
closest reference vector is chosen to approximate it.
VQ algorithm can generate a set of reference vectors
which minimizes mean square of approximation error.
The algorithm can be interpreted as a self-organizing
neural network model adopting competitive Hebbian

learning rule, i.e. a self-organizing map (SOM) lacking
neighborhood learning. Thus, VQ and SOM are very
similar models closely related to each other.

We studied a model consisting of two SOMs con-
nected via anti-Hebbian connections, and showed that
it can extract two different information components
on the two SOMs each[8]. The model was applied
to extract position and head direction from visual in-
formation. In this application, one of the two SOMs
consists of two-dimensional array of cells so that it
can represent two-dimensional positional information,
and the other SOM consisting of one-dimensional ar-
ray of cells is assigned for one-dimensional informa-
tion of direction of the moving object. Simulational
results showed that position-sensitive and direction-
insensitive cells are formed on the two-dimensional
SOM, and direction-sensitive and position-insensitive
cells are formed on the one-dimensional SOM.

In recent study of cortical micro circuits, it was
found that positional information are represented by
‘grid cell’” in the dorsocaudal medial entorhinal cortex
(AMEC)[9]. Grid cells are a kind of position cells but
their receptive field shows periodic grid structure in the
area within which rats are allowed to walk around. A
receptive field of a position cell is the set consisting
of all positions at which the cell fires. It is striking
that the receptive field of the grid cell in AMEC was
not connected but distributed periodically in hexag-
onal lattice, for in most of the self-organizing mod-
els receptive fields of the cells tend to be connected.
We, however, succeeded in reproducing grid-cell-like
position cells by a self-organizing model consisting of
two VQ layers connected by anti-Hebbian inhibitory
synapses[10]. In the study we sipmplified the prob-
lem by using input carring positional information only.
Here, we propose a more natural model consisting of
three VQ layers all of which are trained by 4D in-
puts carrying both of positional and directional in-
formation. Computer simulation showed that also in
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Figure 1: Structure of the proposed model. Three layers
receive a same input at a time. Input vector contains two-
dimensional positional information and one-dimensional
directional information. Layer 1 is for directional infor-
mation and Layers 2 and 3 are for positional information.

this model grid-cell-like position cells were generated
in Layer 3.

2 Layer composition of connected VQs

Our model consists of three layers. Layer 1 is to
detect head direction of the object and Layers 2 and
3 to detect position. Any unit in Layer 2 receives
inhibitory input from all units in Layer 1 via anti-
Hebbian synapses, and any unit in Layer 3 receives
inhibitory input from all units in Layers 1 and 2 via
anti-Hebbian synapses.

All the cells in the three layers receive a same input
vector & which is a function of position (z,y) and head
direction 6 of the object moving randomly in a room
(Figure 1). Layer 1 receives no inputs from Layer 2
or 3, so it works just as an usual VQ model for the
input data. On the other hand, the learning processes
of Layers 2 and 3 are influenced by the cells of Layer
1 through the anti-Hebbian synapses.

The learning rule is described as follows. In this
description, we refer to our algorithm as ‘VQ-AH:

(VQ-AH1) Assign random values for refer-

ence vectors of all units in the three lay-

ers mgl),mf),m,(f), where ¢ = 1,....N®),

j=1,..N® k =1,.,N® and superscript
M, @) and @ stand for the Layers 1, 2 and 3,

respectively. Initialize all inhibitory connections
s B (32

g 0S8k o Sk to zero.

(VQ-AH2) Set the position (z,y), (22 +y*> < 1)
and the head direction 6 (—7 < 6 < 7) of the
object randomly w.r.t the uniform distribution.
Calculate input vector @ = (z,y,cosf,sind) to
the VQ layers.

VQ-AH3) Find the winner, C(l) in Layer 1 for the
input €T

O argmin{Hmz(_l) _ wH2 + 91} (1)

where 6; is the threshold or handicap of cell i in
Layer 1. Then find the winner ¢® in Layer 2,
considering the inhibitory input 55‘,22((11)) from the
winner in the superior layer:
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Finally, find the winner, ¢® in Layer 3 with in-
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(VQ-AH4) After finding three winners ¢!, ¢(2) and

¢ we assign winners’ information to variable

yz(l), y]@ and y,(f’), respectively:

o f1, i=cb, B
vi = {0, otherwise, (1=1,2,3) (4)

(VQ-AHS5) Update the reference vectors of the win-
ners in the three layers.

mgl) = mz(-l) + yfl)oz(l) (a: — mz(-l)) , (1=1,2,3)
(5)

where a(¥) is the learning parameter of the refer-
ence vectors.

(VQ-AHS6) Update the threshold values of Layer 1

— @ _ 1
0; == 0; + v (yz - N(l)) (6)



where «y is the learning parameter of the thresh-
old, and update the inhibitory connections

@0 ._ . g (o, 1
S5 =St ﬁ( ) (yz Yj N(l)N(2)) ’
(@)1 . _ (1), (3) 1
Sk,z( = sy, + 4L (yi Ty — W) ;
(3)(2) ._ 2) (3 1
Sk,;( = sp,,; + 8P <y_j ) - W)

(7)

where 1) gB)1) - 3GI2) are the learning pa-
rameters of the inhibitory connections.

(VQ-AHT) Return to (VQ-AH2) and repeat (VQ-
AH2)-(VQ-AH6) many times.

As iterative learning proceeds, the learning parameters
a®) (1=1,2,3) and gM gBGIM) | 3G)I2) are updated
as follows:

O agl;(} —t/tmax), (1=1,2,3)
ﬁ(2)(1);: 563)(1)(1 — t/tmaX)7
BOM:= 8E V(1L — t/tma),

5(3)(2) = 6(()3)(2) (1 - t/tmaX)-
where oz((f), 62)(1), 563)(1), 563)(2) are initial values of
o and correspondig 3, and t, tyayx are iterative learn-
ing times and maximum of iterative learning times,
respectively. This update leads stability of learning.

(8)

3 Input Data

We need additional learning rules to assign direc-
tional information to Layer 1 and positional informa-
tion to Layers 2 and 3. We divide the whole input
sequence into short periods. There are two kinds of pe-
riods coming up alternatively. One is a position-fiz pe-
riod and the other direction-fix period. A direction-fix
period consists of some sequential inputs which share a
fixed direction 6 but have different positions (z,y). A
position-fix period consists of some sequential inputs
which share a fixed position (z,y) but have different
directions 0. For the first input of a direction-fix pe-
riod the winner of Layer 1 is defined by (1), but for
the rest of the inputs in the period the winner remains
unchanged, while the winners of Layers 2 and 3 are de-
fined for each inputs by (2) and (3), respectively. For
the first input of a position-fix period the winners of
Layers 2 and 3 are defined by (2), (3), but for the
rest of the inputs in the period the winners remain
unchanged, while the winner of Layer 1 is defined for

each inputs by (1). In this simulation the either kind
of period consists of 15 inputs.

4 Simulation results

In the equilibrium of the learning process, the learn-
ing rule (6) assures that the distribution of the winner
on Layer 1 should be uniform over the layer. Similarly,
the learning rules (7) assure that the distribution of
the two winners on two of the the three layers should
be statistically pairwise-independent of each other or
the joint probability of the two winners should be uni-
form. It should be noted this does not mean that the
distributions of the three winners are independent.

Each of the three VQ layers consists of 4 units
(N® = N® = NG) = 4). Learning parameters of
this experiment are o)) = 0.01, v = 0.01; a® =
0.0008, 31 = 0.01; «® = 0.0005, 33D = 0.05,
BRI = 0.005. Also, tmax = 800,000. Learning
results are shown in Figure 2. For plots in this fig-
ure 0 was calculated from Layer 3 and fourth com-
ponents of the reference vector of each unit by 6 =
arctan(m;s, m;4). In Figure 2 (a), (b) and (c), each
of the four columns corresponds to each unit. The
figure 2 (a) shows that the units in Layer 1 are po-
sition insensitive and direction sensitive. The figure
2 (b) and (c) show that Layers 2 and 3 are position
sensitive and direction insensitive. Each of the four
positional receptive fields of the units in Layer 2 is
connected. The whole disk area is divided into four
receptive fields. In Layer 3, however, each of the re-
ceptive fields of the units consists of four disconnected
sub-fields, each of which is contained in one of the four
receptive fields of the units in Layer 2. The represen-
tation of the positional information in Layers 2 and 3
is similar to two-digit quaternary number system.

5 Conclusion

We showed that three VQ layers connected via anti-
Hebbian synapses can extract directional and posi-
tional information separately, and the units in Layer
3 forms disconnected receptive fields, which is similar
to what was observed in AMEC of rats by Hafting et
al.[9]. Our model suggests that there should be some
other position cells with larger and connected recep-
tive fields in somewhere in rats’ brain.

Unlike our preceding results [10] the sub-fields do
not show clear hexagonal lattice pattern. This is be-
cause we used only four units for Layer 3. we assume
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Figure 2: Learning results: (a) Each row consisting
of three small figures shows the property of each unit
in Layer 1. The receptive field in 3D feature space
(z,y,0) is projected in three different ways. The units
in Layer 1 show direction sensitivity only. (b) The
units in Layer 2 show position sensitivity only. The po-
sitional receptive fields are connected. (c¢) The units in
Layer 3 show position sensitivity only. The positional
receptive fields are divided into four sub-fields.

that with more units in Layer 3 we can reproduce the
hexagonal lattice pattern. The model should be tested
with more realistic high-dimensional visual input.
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