
Improvement of Training Method for Dynamic Neural Network

Kunihiko Nakazono Kouhei Ohnishi
University of the Ryukyus Keio University

Senbaru 1, Nishihara, Okinawa. 903–0213 Hiyoshi 3–14–1, Yokohama. 222–8522
nakazono@mibai.tec.u-ryukyu.ac.jp ohnishi@sd.keio.ac.jp

Hiroshi Kinjo Tetsuhiko Yamamoto
University of the Ryukyus University of the Ryukyus

Senbaru 1, Nishihara, Okinawa. 903–0213 Senbaru 1, Nishihara, Okinawa. 903–0213
kinjo@tec.u-ryukyu.ac.jp yamamoto@tec.u-ryukyu.ac.jp

Abstract

In this research, we propose a dynamic neural net-
work (DNN) with the characteristics of stiffness, vis-
cosity, and inertia and a training algorithm based on
the back-propagation (BP) method to include a mo-
mentum term. In a previous research, we proposed
a training algorithm for the DNN based on the BP
method or GA-based training method. However, in
the previous method it was necessary to determine
the values of the DNN parameters by trial and error.
So, the modified BP method and GA-based training
method were designed to train not only the connecting
weights but also the property parameters of the DNN.

We develop the BP method to include a momen-
tum term in order to increase the convergence of the
training effect. Simulation results show that the DNN
with characteristics of stiffness, viscosity, and inertia
trained by the modified BP method to include the mo-
mentum term obtains good training performances for
time series signals generated from periodic function.
In this paper, we compare the DNN with a conven-
tional training method in order to verify the effective-
ness of the DNN.

1 Introduction

In recent years, recurrent neural networks and spik-
ing neural networks have attracted more research in-
terest than layered neural networks having simple
structure [1, 2, 3, 4]. The recurrent neural network is a
possible candidate for improving the system dynamics
because it takes time delayed inputs into consideration
and incorporates a feedback structure in the neuron
unit. Research on spiking neural networks is also on-

going. Spiking neural networks treat spike trains and
process the signals based on spike pulses. However,
the network structure in recurrent neural networks and
spiking neural networks is complex compared to that
in layered neural networks with a training method.

Here, we propose a dynamic neural network (DNN)
that realizes a dynamic property and has a network
structure with the properties of stiffness, viscosity, and
inertia without time delayed input elements. In a pre-
vious research, the DNN was constructed with a train-
ing algorithm that used error back-propagation (BP)
method [5]. However, the BP method updated only
the connecting weights for the DNN, and the property
parameters for the DNN had to be decided by trial
and error. Therefore, we designed a GA-based train-
ing method [6] to train both the connecting weights
and the parameters of the DNN. But the GA-based
training method took the executing time of computer
program that evolved in GA simulation [7, 8]. We
developed the modified BP method to train both the
connecting weights and the parameters [9].

In the present paper, we design the BP method to
include a momentum term in order to increase the
convergence of the training effect. The effectiveness of
the proposed DNN is verified by identifying time series
signals [5, 7, 8, 9]. Simulation results show that the
proposed DNN provides higher performance than the
conventional method.

2 Structure of DNN

In this research, we propose a DNN using a neuron
unit having the properties of stiffness, viscosity, and
inertia without time delayed input elements. In the



neuron unit, we assume that the output from the neu-
ron possesses the properties of stiffness, viscosity, and
inertia, and that the output is propagated in the next
neuron unit. The proposed DNN is composed of three
hierarchy layers, and the proposed neuron adopts only
in a hidden layer. The structure of the DNN is shown
in Figure 1.

ui

yi yj
yk

wjkwij

Fig. 1 Structure of DNN

The equations for the DNN are expressed as follows:

yi = ui, (i = 1, 2, · · · , NI) (1)

yj = Kjfj(netj) + Dj ḟj(netj) + Mj f̈j(netj)
(2)

netj =
NI∑

i=1

wijyi, (j = 1, 2, · · · , NJ) (3)

yk = fk(netk) (4)

netk =
NJ∑

j=1

wjkyj , (k = 1, 2, · · · , NK) (5)

where ui is the input value to the DNN, and yi, yj , and
yk are the output values in the input, hidden, and out-
put layers, respectively. The connecting weight from
unit i in the input layer to unit j in the hidden layer is
denoted by wij . Similarly, wjk is a connecting weight
from unit j in the hidden layer to unit k in the output
layer. The total sum of the products of the connecting
weight wij and wjk and the output value is denoted by
netj and netk, respectively. Mj , Dj , and Kj are the
property parameters of inertia, viscosity, and stiffness,
respectively, and NI , NJ , and NK are the number of
neurons in the input, hidden, and output layers, re-
spectively. The activation function fj(x) in the hidden
layer uses a sigmoid function in range of [−1, 1]. Also
the activation function fk(x) in the output layer is a
linear function.

3 BP-based training method

First, we derive a minimizing sequence of the mea-
surement of error function E:

E =
1
2

NK∑

k=1

e2
k =

1
2

NK∑

k=1

(dk − yk)2 (6)

where dk is the desired signal. In order to minimize
the measurement of the error function E of equation
(6), both of the connecting weights and the property
parameters of the DNN are modified.

The BP-based training method is shown in section
3. The connecting weights and the property param-
eters of the DNN are updated sequentially based on
the steepest descent method.

∆wij = w
(new)
ij − w

(old)
ij = −ε

∂E

∂wij
(7)

∆wjk = w
(new)
jk − w

(old)
jk = −ε

∂E

∂wjk
(8)

∆Kj = K
(new)
j −K

(old)
j = −ε

∂E

∂Kj
(9)

∆Dj = D
(new)
j −D

(old)
j = −ε

∂E

∂Dj
(10)

∆Mj = M
(new)
j −M

(old)
j = −ε

∂E

∂Mj
(11)

ε is the training rate (ε > 0).
∂E/∂wjk and ∂E/∂wij are described as follows.

∂E

∂wjk
=

∂E

∂netk
· ∂netk

∂wjk
=

∂E

∂netk
· yj (12)

∂E

∂wij
=

∂E

∂netj
· ∂netj

∂wij
=

∂E

∂netj
· yi (13)

In the upper expression, the derivations are defined as

δk =
∂E

∂netk
(14)

δj =
∂E

∂netj
(15)

and δk and δj are calculated, respectively. First, δk is
expanded as

δk =
∂E

∂netk
=

∂E

∂ek
· ∂ek

∂yk
· ∂yk

∂netk

= −ekf ′k(netk) (16)

δk finally becomes equation (16).



When δj is calculated in the same way, it becomes
Equation (17).

δj =
∂E

∂netj

=
NK∑

k=1

(
∂E

∂ek
· ∂ek

∂yk
· ∂yk

∂netk

)
· ∂netk

∂yj
· ∂yj

∂netj

=
NK∑

k=1

δk · wjk · ∂yj

∂netj
(17)

∂yj/∂netj is expressed as equations (18)–(21).

∂yj

∂netj

= Kj
∂fj(netj)

∂netj
+ Dj

∂ḟj(netj)
∂netj

+ Mj
∂f̈j(netj)

∂netj

(18)

∂fj(netj)
∂netj

= f ′j(netj) (19)

∂ḟj(netj)
∂netj

= f ′′j (netj) · ˙netj (20)

∂f̈j(netj)
∂netj

= f ′′′j (netj) · ˙net2j + f ′′j (netj) · n̈etj

(21)

Next, the derivation of ∂E/∂Kj is described as fol-
lows.

∂E

∂Kj
=

NK∑

k=1

∂E

∂netk
· ∂netk

∂yj
· ∂yj

∂Kj

= fj(netj) ·
NK∑

k=1

wjkδk

= fj(netj)γj (22)

where γj =
∑NK

k=1 wjkδk.
When the property parameters Dj and Mj for the

error function E are calculated in the same way, it
becomes Equations (23) and (24).

∂E

∂Dj
=

NK∑

k=1

∂E

∂netk
· ∂netk

∂yj
· ∂yj

∂Dj

= ḟj(netj)γj (23)

∂E

∂Mj
=

NK∑

k=1

∂E

∂netk
· ∂netk

∂yj
· ∂yj

∂Mj

= f̈j(netj)γj (24)

In order to increase the convergence of the training
effect, we modify the equations (7)–(11) to include a
momentum term. These equations are described as
follows.

∆wij(t + 1) = −εδjyi + η∆wij(t) (25)
∆wjk(t + 1) = −εδkyj + η∆wjk(t) (26)
∆Kj(t + 1) = −εfj(netj)γj + ηk∆Kj(t) (27)

∆Dj(t + 1) = −εḟj(netj)γj + ηd∆Dj(t) (28)

∆Mj(t + 1) = −εf̈j(netj)γj + ηm∆Mj(t) (29)

where t indexes the present time, and η, ηk, ηd, and
ηm are small constant values.

In this way, the connecting weights and property
parameters of the DNN are updated based on the con-
cept of the modified BP algorithm to include the mo-
mentum term.

4 Numerical simulation

The effectiveness of the DNN proposed in the paper
is verified by numerical simulation in order to identify
a periodic function. The DNN is structured to have a
single input and single output (SISO). The method by
which a time series signal can be identified is shown
in Figure 2. The desired signal, namely the training

Unknown
System

+

−

DNN

u(t)

d(t)

y(t)

e(t)

BP method

Fig. 2 Identification of signals

data d(t), is the signal that has passed one sampling
period prior to the input signal u(t).

In order to facilitate analysis, simulation shows that
the DNN identified the time series signal of the single
sine periodic function with cycle T as

u(t) = sin
(2πt

T

)
. (30)



In numerical simulation, the number of neurons NJ

in the hidden layer is 5 units, and the cycle T equals
16. The initial range of the connecting weights of the
DNN is set to [−0.3, 0.3] at random, and the initial
range of the property parameters is set to 1.0. The
training rate is set to ε = 0.1, and the momentum
rates are set to η = 0.0005, ηk = ηd = ηm = 0.0,
respectively.

The training involved 1,000 iterations. The result
of the error function E is shown in Figure 3.

10−5

10−4

10−3

10−2

10−1

100

101

102

103

0 200 400 600 800 1000

E
rr

or
 fu

nc
tio

n

Iteration

Conventional method
Proposed method

Fig. 3 Iteration result

The result of the simulation shows that the pro-
posed DNN provides good performance compared with
the conventional method without momentum term
(η = 0.0, ηk = ηd = ηm = 0.0). The error function E
decreases gradually and E almost converge about 0.01.
The output of the DNN deviated negligibly from the
desired signal.

5 Conclusion

In the present paper, the proposed DNN, showing
the validity of dynamic neuron with properties of stiff-
ness, viscosity, and inertia, was structured. The train-
ing algorithm adopt the modified BP method. We de-
signed a modified BP method to include a momentum
term in order to train both the connecting weights and
the parameters of the DNN. Simulation results showed
that the DNN trained by the BP method realized good
training performance compared with the conventional
method for time series signals generated from a peri-
odic function.

References

1 D. E. Rumelhart, J. L. McClelland, and PDP Re-
search Group (1989), Parallel distributed process-
ing, MIT Press.

2 R. J. Williams and D. Zipser (1989), A Learning
algorithm for continually running fully recurrent
neural networks, Neural Computation, 1, No.2,
pp.270–280.

3 H. Kinjo, K. Nakazono, and T. Yamamoto (1997),
Pattern Recognition for time series signals using
recurrent neural networks by genetic algorithms (in
Japanese), Trans. of ISCIE, Vol. 10, No. 6, pp.304–
314.

4 W. Mass and C. M. Bishop (1999), Pulsed neural
networks, pp. 16–53, MIT Press.

5 K. Nakazono, K. Ohnishi, H. Kinjo, and T. Ya-
mamoto (2003), Identification of periodic function
using dynamical neural network, AROB 8th ’03,
Vol.2, pp. 633–636.

6 Edited by L. Davis (1991), Handbook of genetic
algorithms, Van Nostrand Reinhold, New York.

7 K. Nakazono, K. Ohnishi, and H. Kinjo (2004),
System identification using dynamical neural net-
work with GA-based training, AROB 9th ’04,
Vol.1, pp. 75–78.

8 K. Nakazono, K. Ohnishi, and H. Kinjo (2005),
Identification of time series signals using dynami-
cal neural network with GA-based training, AROB
10th ’05, CD-ROM, pp. 25–28.

9 K. Nakazono, K. Ohnishi, and H. Kinjo (2006),
Identification using dynamical neural network with
modified BP method, AROB 11th ’06, CD-ROM,
pp. 126–129.


