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Abstract

This paper describes a property of associative memory
networks in which a number of units are replaced when the
networks learn. In our network, every time the network
learns a new item or pattern, a number of neurons die and
the same number of neurons are born. It is shown that the
memory capacity of the network depends on the number of
replaced units, and that the memory capacity is maximized
when the number of replaced units is optimal. The optimal
number of replaced units is small and seems to be inde-
pendent of the network size. Although our model was not
motivated by higher nervous function, the results suggest
that small number of newly born neurons might be optimal
in some sense for the distributed memory system.
Keywords: associative memory, collective memories,
catastrophic interference, new neuron

1 Introduction

The purpose of this paper is to describe a property of
associative memory networks in which a number of units
are replaced when the networks learn a new item. The neu-
ral network models of associative memory have been stud-
ied extensively since 1960’s [1, 2, 3, 4, 5]. Most famil-
iar learning for association among memories is the Hebb
rule or acorrelation-based learning in which each connec-
tion weight between two neurons are modified according to
the correlation between the activities of the neurons. The
learning is local, and easy to implement in the circuits.
There exists a memory capacity for the network. The ad-
dition of new memories beyond the capacity overloads the
system and makes all memory states irretrievable (catas-
trophic forgetting) unless there is a provision for forgetting
old memories.

If the dynamics of weight connections of the network
have decay [3, 4] or saturation[1], the catastrophic forget-
ting does not occur and the network can keep recent memo-
ries. Here we describes the alternative network which share

the same properties; avoidance of catastrophic forgetting,
keeping recent memories. In our network, every time the
network learns, neurons die and are born. The number of
replaced units was varied in the experiment to maximize
the memory capacity. We found that the optimal number
of replaced units was small and independent of the network
size. Although our model was not motivated by higher ner-
vous function, the results might suggest that small number
of newly born neurons is enough and optimal for a tempo-
ral memory system such as the hippocampus.

2 Associative Memory
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Figure 1: A network of associative memory

2.1 Network dynamics

In our network of associative memory (Fig.1, [1]), each
unit, j, has two states, and is described by a variable
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Figure 2: Number of memories correctly recalled as a function of number of learned ones.

x j = ±1. The instantaneous state of the system ofn units
can be thought of as ann-dimensional vector having com-
ponentsxi . The units are inter-connected by a network of
synapses, with a synaptic strengthwi j from unit j to unit i.
The instantaneous input to uniti is

ui =
n

∑
j=1

wi j x j (1)

wherex j is the present state (±1) of unit j. The state of the
system changes in time; Each uniti readjust its state, set-
ting xi = ±1 according to whetherui , the input toi at that
moment is greater or less than zero. The units act asyn-
chronously in a random order. This algorithm defines the
time evolution of the state of the system. For any sym-
metric connection matrix{wi j }; wi j = w ji , there are stable
states of the network of units; Starting from any arbitrary
initial state, the system reaches a stable state and ceases to
evolve [1].

2.2 Content addressable memory

The Hebb rule has served as the starting point for the
study of information storage in simplified models. Suppose
we wish to store the set of statesxµ ,µ = 1,2, · · ·m. To
learn a new memoryx1, incrementwi j by

∆wi j = x1
i x1

j . (2)

This learning process is local; the increment for connection
wi j does not depend on the global structure of the state or
past memories, but only onx1

i andx1
j . It is fast and does

not need to learn each memory repeatedly.
This network now functions as an associative memory.

If started from an initial state which resembles somewhat
statex1 and which resembles otherxµ(µ 6= 1) very little,
the state will evolve to the statex1. The statex1 is evoca-
ble memory, and the system correctly reconstructs an entire
memory from any initial partial information, as long as the
partial information was sufficient to identify a single mem-
ory. Detailed properties of the collective operation of this
network have been studied extensively [1, 2, 3, 4, 5].

2.3 Catastrophic forgetting or interference

Computer modeling of memory storage according to
equation (2) was carried out forn = 2000. 550 random
memory states (x1, · · · ,x550) were chosen in each of which
half of units were in the active firing state on the aver-
age. The network learned one by one by updatingwi j in-
crementally, i.e., new memories were continually added to
wi j . There is a memory capacity for this network [1, 2, 5];
About 280(= 0.14n) states can be simultaneously memo-
rized without error in recall. The addition of new memories
beyond the capacity overloads the system and makes all
memory states irretrievable (catastrophic forgetting) unless
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Figure 3: Closeness between each learned statexµ and the recalled state for each memory,xµ ,µ = 1, · · · ,550.

there is a provision for forgetting old memories.
The network learned550memories one by one in which

a memoryxt was learned at timet. We tested at each time
t, whether network can recall each learned memory without
error. Each learned statexµ , µ = 1, · · · , t was given as a
starting state to the network. The network quickly reached
a stable statex. We comparedxµ to x thus obtained. The
proximity of the two states was measured by retrieval over-
lap

a =
1
n

n

∑
i=1

xµ
i xi .

We counted the number of successfully recalled memories
in which the proximity was larger than 0.9. A curve of
R = 0 in Fig. 1 illustrates how many states there were
remembered without error in recall at timet; The net-
work was able to remember all of memorized patterns for
t < 280, where it was able to learn, But att = 280, forget-
ting started, and any memories could not be remembered
correctly aftert = 380., i.e., the network could not recall
even the most recent memory.

3 Results

For simplicity, we assume the following throughout the
present experiment: Every time the network learns a new
memory, a number of neurons, sayR neurons, die and the

same number of neurons are born; we assumed that the
total number of neurons does not change in time. It cor-
responds to reset connection weightswi j = w ji = 0, j =
1, · · · ,n for replaced neuronsi. Units were replaced from
the oldest one, i.e., they were replaced always in the same
order. Simulation were carried out on a computer for
n = 2000with varying R, number of replacing units. Re-
sults are shown in Fig.1. Larger was the number of re-
placing unitsR, earlier the start of forgetting. ForR= 1,
forgetting started at aroundt = 180and forR= 3 it started
at aroundt = 60. Our interest was the properties of the
network whose structure had already been stable (t > 500).
The network forR = 0,1 could not recall any memory at
t > 420. For largeR≥ 2, the network could recall a num-
ber of memories;44 memories were recalled successfully
for R= 4.

To see which 44 memories out of 550 were kept success-
fully, we tested the network att = 550; each learned mem-
ory xµ was given as a initial state, and the closeness of sta-
ble state of the network and memories was measured. Re-
sults are shown in Fig.2. As we expected, only the newest
memories were recalled correctly. Results of the networks
for R = 4 and R = 10 show that the number of memory
successfully retained (a network capacity) was dependent
onR, the number of replacing units. It turned out that there
was a optimal replacing number nearR= 3 for n = 2000.
Computer simulation was carried out forn = 5000 with



varyingR, we found that the optimal replacing number was
the same as before, nearR = 3. The number of success
recalls depends onR, and the network forR≈ 3 was the
optimal to maximize the number, which seems to be inde-
pendent to the network size.

4 Discussion

To our surprise, the optimalR≈ 3 seemed to be inde-
pendent to the size of the network. The proof of this con-
jecture might be possible under the following assumption:
The present network is equivalent to the network in which
weight connections have decay [3, 4] or saturation[1]. The
networks share the same properties: avoidance of catas-
trophic forgetting, keeping recent memories.

The CA3 area of hippocampus is involved in associative
memory recall [6, 7], and often modeled by a fully con-
nected network in which each memory is represented by
the activity of distributed and sparsely coded pattern. The
models proposed so far for explanations of neurogenesis in
hippocampus were layered networks which was designed
based on known anatomical knowledge [8, 9, 10, 11, 12] in
which hypothetical functions were assigned such as mak-
ing sparse representation, enlarging a dimension of input
signal, assigning distinct codes to similar inputs. In our
simple system, replacing only a small number of units pre-
vent from the catastrophic forgetting, maximizing a mem-
ory capacity. Memories in the hippocampus seems to move
into the cortex within 6 weeks. The role of the hippocam-
pus memory systems seems to retain recent limited number
of memories. Our example also might answer from a math-
ematical viewpoint the question of why most newly born
neurons die before they mature, and substantial number of
replaced neurons observed is so small. It seems that the
properties revealed in the present paper does not change by
a slight modification of the model. (e.g., sparsely coded
memory, the order of turnover)
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