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Abstract

The Nu support vector machine is geometrically
characterized as the problem of finding the shortest
segment, between two reduced convex hulls, each of
which is made from the set of given examples belong-
ing to one class. This paper discusses what happens if
each reduced convex hull is replaced with the set of its
vertices, which may lead to a smaller complexity. Our
experimental study shows this substitution makes the
performance much worse, which means that the SVM
solution is not a vertex in many cases.

1 Introduction

A support vector machine (SVM) is a classifier that
nonlinearly maps given input vectors to feature vec-
tors in a high-dimensional space, and that linearly
separates the feature vectors with an optimal hyper-
plane in terms of margin [1-4]. Although an SVM has
good properties such that there are no local minima in
its error surface and it has a high generalization abil-
ity, it requires a high computational complexity since
the problem is equivalent to a quadratic programming
(QP) with variables of the same number as given ex-
amples.

To reduce the complexity, Mavroforakis and
Theodoridis [5] proposed an SVM implement based
on geometric properties of the nu-SVM, a variant of
SVMs proposed in [6] and analyzed in [7-10]. An
important property of the nu-SVM utilized in [5] as
well as the others is the fact that the SVM solution is
strongly related to the reduced convex hull (RCH) of
given examples in the feature space [11]. In the case of
homogeneous separating hyperplane being employed,
especially, the problem of SVM with soft margins is
equivalent to finding the point nearest the origin in
the RCH.

The nearest point may be located on a surface or
an edge of the RCH. The point is sometimes a vertex
of the RCH. As shown in [5], any vertex of the RCH

is a weighted sum of given examples where the weight
takes one of the fixed three values. [5] utilized this
property and reduced the complexity of the nu-SVM.

Suppose that we substitute the nearest vertex for
the nearest point in the RCH. Although this operation
obviously degrades the performance, it may reduce the
complexity drastically at an expense of a slightly lower
performance. The purpose of this study is to elucidate
the trade-off experimentally.

Note that we treat only the linear kernel, that is,
the input and feature spaces are identical, through this
paper for simplicity.

2 Geometry of the Nu Support Vector
Machines

The nu support vector machines (v-SVMs) are a
variation of SVMs where the margin is not set to unity
but a variable 8 which is maximized as much as pos-
sible, differently from the original SVMs [6]. That is,
given N input vectors f (") and the corresponding out-
puts y(™, the »-SVM is formulated as
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where &, are slack variables for the soft margin tech-
nique.

If we define @ = (w;b) € F and f = (f;1) € F
where h is a positive constant and F' is the augmented
input space F'x R, the separating hyperplane w’ f+b =
0 is expressed as a simple inner product @’ f = 0, that
is, the hyperplane is homogeneous. This operation
is called lifting-up. The »-SVM with homogeneous
hyperplanes seems equivalent to but differs from the
original v-SVM (1), since the former also penalizes the
offset in the cost function due to

lw]|* = [lw]® + b, (2)



Figure 1: The reduced convex hull of examples. When
C is the reciprocal to the size of the example set, it
reduces to the centroid of the examples.

Figure 2: A geometrical view of the solution of a v-
SVM.

See [10] for the details on the effect of lifting-up.
The Wolfe dual problem of (1) is derived as
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where «,, are the Lagrange multipliers. Let &, = 2ay,
and C = 2C. Then, (3) is written as
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Here, (5) means that the first term of (4) is a vector in
the convex hull of the examples with y(™ = 1 and the
second with 3™ = —1 since the sum of alz;han >01is
unity. And the restriction of the weight & between 0
and C reduces the convex hull to the so-called reduced
convex hull (Fig. 1). Since the distance between such
vectors is minimized in (4), the v»-SVM solution has

1 ~

O____-—

Figure 3: A reduced convex hull is the convex hull of
centroids.

Figure 4: Soft-margin technique makes the examples
linearly separable.

the direction vector w; parallel to the segment con-
necting the two reduced convex hulls H; and H_ and
having the minimum length (Fig. 2), while the bias
of the solution is a little different from the center of
the segment [10-12]. This clear geometrical picture is
a reason why the v-SVM is preferred to the original
SVM in theoretical studies.

3 Discrete Support Vector Machines

Suppose C = 1/M where M is an integer, since
the generalization is straightforward. Then, the re-
duced convex hull of an example set is equivalent to
the convex hull of the set which consists of the cen-
troids of M distinct examples (Fig. 3). This fact
clearly shows that the soft-margin technique, intro-
ducing C' less than unity, is to change the distribution
of the input vectors, that is, to make it milder by av-
eraging and linearly separable (Fig. 4) [7]. Since the
reduced convex hull shrinks to the centroid of all ex-
amples as C' — 1/N, any problem becomes separable
then, except some special cases.

Suppose that we substitute the nearest vertex for
the nearest point in the RCH. Although this operation
obviously degrades the performance, it may reduce the
complexity drastically at an expense of a slightly lower
performance, since &,, takes either of the fixed values,
0 or C =1/M. We term this method the discrete
SVM in this paper.



Figure 5: A geometrical view of the »-SVM solution.

The discrete SVM produces a different hyperplane
from the v-SVM, except for special cases, e.g., when
the input vectors distribute on the 1-dimensional hy-
persphere and the soft-margin parameter C' is a half.
From the geometrical viewpoint, they have different
pictures: In homogeneous hyperplanes’ case, the v-
SVM solution is the center of the minimum circum-
scribed circle including all the examples [8,13] while
the nearest vertex is the centroid of M examples
(Fig. 5). We experimentally elucidate their difference
in the next section.

4 Computer Simulations

We carried out some computer simulations to com-
pare the discrete SVM with the v-SVM. The dis-
crete SVM is given N examples, where the input
vector (™ € RX of the nth example (x(™,y(™)
obeys the normal distribution, N((10y™, 05 1), I),
and y™ = 1for 0 < n < N/2 and y™ = 1 for
N/2 <n<N.

It is known that the »-SVM has the average general-
ization error of order 1/N [14,15]. Hence, we evaluate
the average generalization error of the discrete SVM
in our experiments, which is given from the angle be-
tween the weight vector of the discrete SVM and the
true one. The results are shown in Fig. 6, where K
is 2 or 3 and N is 100 to 1000. As far as we see in
the results, the average generalization errors did not
decrease even when the number of examples, N, in-
creases. This phenomenon is very strange.

5 Conclusions

We proposed the discrete SVM, which substitutes
the nearest vertex for the nearest point in the RCH,
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Figure 6: Generalization errors versus the number of
examples.

to reduce the computational complexity. However,
our experimental study of evaluating its performance
showed that this algorithm is far from practical at this
moment. We will elucidate the reason why the discrete
SVM has such a strange learning curve and propose an
improved algorithm in the near future.
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