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Abstract

Support vector machines (SVMs) are known to re-
sult in a quadratic programming problem, that re-
quires a large computational complexity. To overcome
this problem, the authors proposed two incremental
SVMs from the geometrical point of view in the previ-
ous study, both have a linear complexity with respect
to the number of examples on average. One method
was shown to produce the same solution as an SVM in
batch mode, but the other, which stores the set of sup-
port vectors, was known to have a larger generalization
error. In this study, we derive the learning curves of
the latter method, assuming that the probability the
set. of support vectors is updated is proportional to
the current margin and so is the decrease of the mar-
gin in the update, too. In the derivation, we employ
the disc approximation which is to be justified yet, but
the result agrees well with computer simulations.

1 Introduction

A support vector machine (SVM) nonlinearly maps
given input vectors to feature vectors in a high-
dimensional space and linearly separates the feature
vectors with an optimal hyperplane in terms of mar-
gin [1,2]. It has an advantage that there are no local
minima in the error surface since finding the optimal
hyperplane results in a convex quadratic programming
problem (QP) with linear constraints. However, a QP
requires a high computational complexity and even
good QP solvers, such as interior-point methods, can
solve problems of a limited size.

In order to cope with this limitation, we proposed
two incremental methods in the previous study, based
on another property of SVMs, that is, sparseness [3].
One can produce the same solution as that of the SVM
in a batch mode, however, its implement is not easy.
The other is simple and has a less complexity but its
performance is a little worse. A rough geometrical
analysis showed that the degradation of performance
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is limited; its generalization error has the same or-
der as that of the SVM in a batch mode [3]. In this
paper, we derive the learning curves more quantita-
tively based on the disc approximation. Although the
disc approximation is to be justified yet, the theoreti-
cal learning curves agree well with those of computer
simulations.

2 Effective Examples and Support
Vectors

An SVM maps an input vector x to a vector f =
f(x) called a feature vector in the feature space. In
this study, however, we employ the so-called linear ker-
nel and assume that the feature vector is normalized.
That is, ||fll = [|f(z)]| = ||z|| = 1 for any . In
addition, we only consider SVMs with homogeneous
separating hyperplanes, w” f = 0, instead of inhomo-
geneous separating hyperplanes in the original SVMs,
w? f+b =0, where T denotes the transposition. Note
that a problem with inhomogeneous hyperplanes is
easily transformed to one with homogeneous hyper-
planes using the so-called lifting up, w’ := (w’,b) and
}I := (f',1), where := means definition, though they
differ a little since the latter also penalizes the bias
b [4].

An SVM is given N examples and the ith ex-
ample is a pair of an input vector f;, in the M-
dimensional unit hypersphere S and the correspond-
ing label y; € {+1} satisfying y; = sgn(w*” f,),
where w* is the true weight vector to be estimated.
Since the separating hyperplane is homogeneous, an
example (f;,y;) is completely equivalent to (y;f;,1)
and hence we can consider that any example has a
positive label. In short, input vectors f are chosen
SM — {f|fTw* > 0}, which we call the input space.

We assume that w € SM without loss of general-
ity where SM is called the weight space. When an
example (f,,y;) is given, the true vector w* must be
in the hypersemisphere {w|y;w” f; > 0}. This means



that an example is represented as a point in the input
space and a hyperplane in the weight space (Fig. 1).
On the other hand, a weight vector is represented as
a hyperplane in the input space and a point in the

weight space.
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Figure 1: Duality of the Input space and the weight
space.

When N examples are given, w* has to be in an
area

Ay ={w|yw’ f, >0,i=1,... N}, (1)

which we call the admissible region [5] (Fig. 2). The
admissible region Ay is a polyhedron in S™. If the ad-
missible region changes when an example is removed,
the example is called effective. Note that the set of ef-
fective examples makes the same admissible region as
all the examples. So, some algorithms for estimating
w, including SVMs, utilize only effective examples.

o

Figure 2: Admissible region in the weight space

Under the assumption that the feature vectors are
normalized, an SVM solution has a clear geometri-
cal picture. Finding a hyperplane that maximizes the
margin results in a quadratic programming problem,

1
min  ||w]|? st w' f; > 1. (2)

w,&;

It is known that the SVM solution w necessarily has
the form

N
Ww=> of, (3)
i=1

where «; are the Lagrangian multipliers. When «; #
0, f, is called a support vector. In other words, @ con-
sists of only support vectors. From the Karush-Kuhn-
Tucker optimality conditions, support vectors f, sat-
isfy ﬁ)Tfi = 1 and the others do not. This means
that the SVM solution w is equidistant from support
vectors [6]. Since ||| is not necessarily unity, we con-
sider the meaning of the above in the weight space S™.
It is easily shown that w in S™ (that is, w/||w]|) is
still equidistant from support vectors in the angular
distance of SM and the SVM solution v is the center
of maximum inscribed sphere in the admissible region
Ay (Fig. 3) [7]-

Figure 3: The optimal weight v is the center of max-
imum inscribed sphere in the admissible region.

3 Incremental SVMs

The discussion above claims that a learning ma-
chine can get the same information from only the set
of effective examples. Thus, the incremental algorithm
below referred to as Method 1, gives the same answer
as the SVM in batch mode:

1. The machine has the effective set of n given ex-
amples.

2. Unless the (n + 1)st example is effective, neglect
it.

3. Otherwise, the effective set is remade, adding the
(n 4 1)st example.

This algorithm has a low computational complexity in
average, but it is not easy to know whether an example
is effective or not [3].

Two cope with the problem, we proposed to store
support vectors instead of effective examples, since
any support vector is effective by definition. Although
there may be some loss in information, an example is
easily determined whether it is a new support vector



or not: the example is a support vector if and only
if its distance from the current separating hyperplane
is less than the current margin. Hence, the algorithm
referred to as Method 2 is written as below:

1. The machine has the set of support vectors of n
given examples.

2. If the (n + 1)st example is more distant from the
separating hyperplane than the current margin,
neglect it.

3. Otherwise, the set of support vectors is updated
by an SVM solver with the support vectors and
the (n + 1)st example.

Method 2 neglects a new example which is effective
but not a support vector. Since such a vector may
become a support vector in the future, Method 2 has
a lower performance than the conventional SVM or
Method 1. How much is the degradation in Method
27 We give an answer to this problem in the next
section.

4 Learning Curves of Method 2

We assume hereafter that examples are chosen from
S uniformly and independently as well as a test in-
put, as is done in [5]. The learning curves will be
derived, as was in [3], based on the following two as-
sumptions:

e The probability that the set of support vectors is
updated is proportional to M,,.

e The decrease of the margin is also proportional to
M,.

The above assumptions lead to the following update
equation

Moot = [1 — aMy) My, + aMa[MM,]  (4)
= Mn - a[l - )‘]MrQw (5)

by simple calculation that leads to

Css 1

MN—N Css—a(l_)\). (6)

We here introduce a new approximation, which we

term the disc approximation, and evaluate the values

of @ and X in (5). In short, the disc approximation
regards the admissible region a disc.

The probability aM,, that the set of support vec-

tors is updated is approximately expressed as the ra-

tio of the radius of the admissible region to that of

the hemisphere. In asymptotics of N — oo, the ad-
missible region shrinks and can be regarded as a disc
in a plane, however, the hemisphere cannot, since it is
curved. Therefore, we evaluate an approximate of the
radius of a hemisphere from its volume, using the fact
that the volume is proportional to the radius power to
M. As a result, the probability aM,, is evaluated as

M, 1/M
/ / sin™ =1 rdrdw
M—-1
aMn = 5 07‘./2 (7)
/ / sin™ ! rdrdw
sM-1 Jg
M,
~N— . 8
(MIy)YM ®)
where
/2 VaT[M/2]
I = inM—1 = - ' -
M /0 sin rdrdw ST 1 1)/2] (9)

The decrease of the margin is also evaluated based
on the volume of the admissible region. When the
admissible region is a disc and the new example inter-
secting the region is distributed uniformly thereon, the
decrease of the volume can be calculated as below, us-
ing the disc approximation and the radius-evaluation
based on the volume, as before.

Suppose that the new example divides the admissi-
ble region A,, with radius M, into two regions, A%,
and AR |, at x = 0 € (—M,,, M,,) (see Fig. 4). Then,
the radius of the maximum inscribed sphere in A%,
is M, + 6 and that in AR | is M, — 6. Based on the
disc approximation, their volumes are written as

A5 1| = [DM](M, + 0)™, (10)
A | = [DM](M, — 0)™, (11)
|[An| = DM M, (12)

where |DM| is the volume of the unit M-dimensional
disc. Taking into account that the probability of
the true parameter being located in A%_H is given as
|AL . 1|/|An|, the average ratio of the volume of the
updated admissible region to the original is written as

2 2
E [Apy1] _ 1 /M |A%+1| n |A5+1| a6
|A,] 2M,, ), A, A,

(13)
2
2M + 1 (14)
Then A\ is
9 1/M
=(—"— . 1
Gr= 19



In total, ¢y is expressed as

(M )M
L (ﬁ“)l/M

from (6), (7) and (15).
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Figure 4: The new example divides the admissible re-
gion into two regions at © = 6 € (—M,, M)

5 Computer Simulations

In order to confirm the validity of (16), some com-
puter simulations were carried out. N = 5000 exam-
ples are chosen from S -]i-\/[ uniformly and independently
and Method 2 learns the examples gradually.

Fig. 5 shows the average margins versus the num-
ber of examples, where the solid lines represent the
theoretical results and dashed lines the experimental
results for M = 4 and M = 20. It is clearly shown
that the experimental curves in both figures approach
the theoretical ones.
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Figure 5: Learning curves of Method 2.

6 Conclusions

In this paper, we analyzed Method 2 more strictly
under the assumption that both the probability of the

set of support vectors being updated and the decrease
of the margin are proportional to the current margin
than [3]. The disc approximation, we introduced here,
makes it possible to evaluate their coefficients. The
theoretical learning curves derived here agreed well the
experimental results given by computer simulations.
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