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Abstract
We  proposed  a  self-repairing  network  where 

nodes are capable of repairing neighboring nodes by 
mutually copying. A critical point where faulty nodes 
can be eliminated has been investigated. This paper 
further studies dynamics of eradicating faulty nodes 
by  comparing  the  self-repairing  network  with 
mathematical epidemic models such as SIS models. It 
is shown that the self-repairing network, which is a 
probabilistic cellular automaton, can be regarded as an 
epidemic model in some restricted situations. 

1. Introduction

Information networks are complex systems with 
multiple and interacting processes work in parallel on 
various  network  structure.  Self-recovery  of  such 
networks  have  been  studied  with  a  focus  on  the 
network structure [1] as well as interacting processes 
[2].  We  have  been  studying  on  a  self-repairing 
network  with  a  focus  on  state  propagation  and 
regulation keeping the network model simple enough 
for  analysis  [3,  4].  In  the  model,  the  two  state 
propagations have been involved: the abnormal state 
propagation  by  unsuccessful  repair  as  well  as  the 
normal state propagation by successful repair. 

Epidemic models  have been studied for  a  long 
time,  and  nonlinear  properties  of  the  models  have 
investigated in great  detail.  The models  include not 
only those described by differential equations [5] but 
by  probabilistic  cellular  automata  [6]  or  even 
including moving agents [7]. On the other hand, phase 
transitions  have  been  studied  on  models  extended 
from an Ising model in the field of statistical physics 
but involving probabilistic cellular automata [8].

Our model has been already related with a model 
in  statistical  physics  [3].  This  paper  specifically 
focuses  on  the  relation  between  the  self-repairing 
network and an epidemic model called SIS model.

2. A Self-Repairing Network Model
2.1. A model by a probabilistic CA [3]

The self-repairing network is  a  network whose 
nodes can be normal (0) and abnormal (1);  and are 
capable of repairing the neighbor nodes by copying its 
content. Each node repairs the neighbor nodes with a 
probability  Pr.  The  repair  will  be  successful  with  a 
probability Prn when it is done by a normal node, but 
with  a  probability  Pra when  done  by  an  abnormal 
node. Further, all the repair must be successful for the 
target node to be normal when repairing is done by 
multiple nodes (Fig. 1). 

Fig. 1.  Repair success rate when repairing is done by 
normal node (above, left) and by abnormal node (above 

right); all the repairs by neighbor nodes must be 
successful for the target node to be normal (below). 

Solid arcs indicate repairing and dotted arcs indicate 
state change.



Fig. 2. 1-dimensional structure with two adjacent neighbor 
nodes

When repairing is done by copying, the marked 
difference  from  conventional  repairing  is  that  the 
repairing rather could have contaminated other nodes 
rather  than  cleaning:  the  double  edged  sword in 
repairing.  Thus,  it  is  important  to  investigate  on 
conditions under which the network may be cleaned. 
To  clarify  the  conditions,  we  used  a  probabilistic 
cellular  automaton  [3,  4]  which  turned  out  to  be 
Domany-Kinzel model [8] is some particular cases. 

In  a  1-dimensional  structure  with two adjacent 
neighbor nodes (Fig. 2), the probabilities for each rule 
of state change are listed in Table 1. 
 

Table 1.  Transition probabilities of the one dimensional 
probabilistic cellular automaton [4]

State 
change Transition Probability

000→1 ( ) ( )21 +−− rrnrrnr PPPPP

001→1 ( ) ( ) ( ) ( )( )rarnrrrarnr PPPPPPP −+−−+− 11112

101→1 ( ) ( )( )rarrar PPPP −−− 121

010→1 ( )( )rnrrrnr PPPPP +−− 121

011→1 ( )( )( )rnrarrrarnr PPPPPPP +−+− 11

111→1 ( )( )rrarrar PPPPP −+− 121

2.2  Steady  state  analysis  with  mean  field 
approximation [4]

Let  y denote a fraction of abnormal nodes, and 
let  the  probability  of  being  abnormal  (1)  be 
approximated by  y at any nodes. Then the dynamics 
of y can be described by the equation (1) where a, b, 
and  c are  constants  determined  by  the  three 
parameters of the self-repairing network. 
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In order for abnormal nodes eradicated,  c must be 0 
i.e. 1=rnP , for suppose otherwise normal nodes could 
have spread abnormal states. When 0=c , the following 
condition  (2)  must  be  satisfied  for  abnormal  states 
eradication,  since  the  time  derivative  dt

dy  must  be 
negative in the equation (1).
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2.3 Simulation Results

Although  the  mean  field  approximation  above 
suggested  parameter  conditions  for  abnormal  node 
extinction, it must be verified by computer simulation 
for the self-repairing model by a probabilistic cellular 
automaton.  To  investigate  the  dynamics  of  normal 
node  population  when  rnP  varies,  a  computer 
simulation  is  conducted  with  parameters  listed  in 
Table  2.  Fig.  4 plots  the  time evolution  of  normal 
nodes  when  rnP  varies  as  well  as  numerical 
calculation of the mean field approximation. 

Table 2. Simulation Parameters

Parameters Value
Time steps for each trial 1500
Number of trials 10
Number of nodes 400
Initial number of normal nodes 200
Pr 1.0
Prn 0.6, 0.9, 1.0
Pra 0～1(0.02)



Fig. 4. Time evolution of the number of normal nodes when Prn 

varies (legends) 

3. Self-Repairing Network and SIS Model
3.1 An SIS model

Epidemic  models  assume  the  states  such  as  S 
(susceptible),  I  (infected),  and  R  (recovered). 
Combining  such  states  allowed,  epidemic  models 
varies from SI, SIS, and SIR. Among them, in an SIS 
model assumes that susceptible nodes will fall into the 
infected  state  with  an  infection  rate  β when  the 
neighbor nodes are infected. The infected nodes will 
be  recovered  with  a  recovery  rate  γ and  become 
susceptible state again. The SIS model can describe, 
for example, a sexually transmitted diseases; venereal 
disease gonorrhea [5].

Susceptible (S) and infected (I) state respectively 
correspond to normal (0) and abnormal (1) state in the 
self-repairing  network.  Fig.  5 shows  the  state 
transition between S(0) and I(1). 

Fig. 5. State Transition in an SIS Model. Solid arcs indicate 
repairing and dotted arcs indicate state change. Solid arcs 
indicate repairing and dotted arcs indicate state change.   

3.2  Parameter correspondence between an SIS 
model and a self-repairing network

In a random graph with a mean degree k , the 
dynamics of the fraction of infected (abnormal) nodes 
y  can be described as follows.  
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Thus, when rnP =1 and hence c=0 in the equation (1), 
parameters  a,  b of  a  self-repairing  network will  be 
related to the parameters of the above SIS model as 
follows. 

ka β−=

γβ −= kb
Since  we  consider  one-dimensional  cellular 
automaton for the self-repairing network,  k  could 
be evaluated as 2, and hence; 
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3.3 Simulation Results

 To  examine  the  correspondence  between  the 
SIS Model and the self-repairing network, simulations 
are conducted with parameters listed in Table 3.  Fig. 
6 plots the number of normal nodes varying the repair 
success  rate  raP when  repaired  by  abnormal  nodes. 
The SIS model and the self-repairing network mostly 
matches, however, both models do not match with the 
numerical  solution  obtained  from  the  mean  filed 
approximation  (1),  particularly  when  raP  is  greater 
than 0.3. 



Fig. 6.  Relation between SIS Model and Self-Repairing Model.

Table 3. Simulation Parameters

4. Conclusion

The self-repairing network involves repairing by 
mutual  copying in  a network.  Hence,  it  models not 
only abnormal state propagation (unsuccessful repair) 
but normal state propagation (successful repair). Thus, 
it  differs  from  the  epidemic  models  which  models 
only  abnormal  state  propagation  (infection),  and 
recovery is modeled as an independent event (not as 
propagation).  This  paper  shows,  in  spite  of  the 
difference,  self-repairing network can be reduced to 
an SIS model under certain conditions. 
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Time steps for each trial 500
Number of trials 10
Number of nodes 400
Initial number of normal nodes 200
Pr 1.0
Prn 1.0
Pra 0～1(0.02)
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